References: Herelleviridae

 

Alemayehu, D., R. P. Ross, O. O'Sullivan, A. Coffey, C. Stanton, G. F. Fitzgerald and O. McAuliffe (2009). Genome of a virulent bacteriophage Lb338-1 that lyses the probiotic Lactobacillus paracasei cheese strain. Gene 448: 29-39. [PubMed]

Alikhan, N. F., N. K. Petty, N. L. Ben Zakour and S. A. Beatson (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12: 402. [PubMed]

Alkalay-Oren, S., N. Gold, L. Khalifa, O. Yerushalmy, S. Coppenhagen-Glazer, R. Nir-Paz and R. Hazan (2021). Complete genome sequences of two Enterococcus faecalis bacteriophages, EFGrKN and EFGrNG, targeted to phage therapy. Microbiol Resour Announc 10: e00126-21. [PubMed]

Asare, P. T., N. Bandara, T. Y. Jeong, S. Ryu, J. Klumpp and K. P. Kim (2015). Complete genome sequence analysis and identification of putative metallo-beta-lactamase and SpoIIIE homologs in Bacillus cereus group phage BCP8-2, a new member of the proposed Bastille-like group. Arch Virol 160: 2647-50. [PubMed]

Baena Lozada, L. P., M. Hoppert and R. Hertel (2020). Phage vB_BmeM-Goe8 infecting Bacillus megaterium DSM319. Arch Virol 165: 515-7. [PubMed]

Barylski, J., F. Enault, B. E. Dutilh, M. B. P. Schuller, R. A. Edwards, A. Gillis, J. Klumpp, P. Knezevic, M. Krupovic, J. H. Kuhn, R. Lavigne, H. M. Oksanen, M. B. Sullivan, H. B. Jang, P. Simmonds, P. Aiewsakun, J. Wittmann, I. Tolstoy, J. R. Brister, A. M. Kropinski and E. M. Adriaenssens (2020). Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages. Syst Biol 69: 110-23. [PubMed]

Barylski, J., G. Nowicki and A. Goździcka-Józefiak (2014). The discovery of phiAGATE, a novel phage infecting Bacillus pumilus, leads to new insights into the phylogeny of the subfamily Spounavirinae. PLoS One 9: e86632. [PubMed]

Cadungog, J. N., B. E. Khatemi, A. C. Hernandez and G. F. Kuty Everett (2015). Complete genome sequence of Bacillus megaterium myophage Moonbeam. Genome Announc 3: e01428-14. [PubMed]

Carlton, R. M., W. H. Noordman, B. Biswas, E. D. de Meester and M. J. Loessner (2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatic analyses, oral toxicity study, and application. Regul Toxicol Pharmacol 43: 301-12. [PubMed]

Chernomor, O., A. von Haeseler and B. Q. Minh (2016). Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol 65: 997-1008. [PubMed]

Chibani-Chennoufi, S., M. L. Dillmann, L. Marvin-Guy, S. Rami-Shojaei and H. Brüssow (2004). Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family Myoviridae. J Bacteriol 186: 7069-83. [PubMed]

del Rio, B., E. Sánchez-Llana, N. Martínez, M. Fernández, V. Ladero and M. A. Alvarez (2020). Isolation and characterization of Enterococcus faecalis-infecting bacteriophages from different cheese types. Front Microbiol 11: 592172. [PubMed]

El-Arabi, T. F., M. W. Griffiths, Y. M. She, A. Villegas, E. J. Lingohr and A. M. Kropinski (2013). Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virol J 10: 48. [PubMed]

Erill, I. and S. M. Caruso (2015a). Complete genome sequence of Bacillus cereus group phage TsarBomba. Genome Announc 3: e01178-15. [PubMed]

Erill, I. and S. M. Caruso (2015b). Genome sequences of two Bacillus cereus group bacteriophages, Eyuki and AvesoBmore. Genome Announc 3: e01199-15. [PubMed]

Feyereisen, M., J. Mahony, G. A. Lugli, M. Ventura, H. Neve, C. Franz, J. P. Noben, T. O'Sullivan and D. V. Sinderen (2019). Isolation and characterization of Lactobacillus brevis phages. Viruses 11: e0393. [PubMed]

Finstrlová, A., I. Mašlaňová, B. G. Blasdel Reuter, J. Doškař, F. Götz and R. Pantůček (2022). Global transcriptomic analysis of bacteriophage-host interactions between a kayvirus therapeutic phage and Staphylococcus aureus. Microbiol Spectr 10: e0012322. [PubMed]

Ghosh, K. and K. P. Kim (2019). Complete nucleotide sequence analysis of a novel Bacillus subtilis-infecting phage, BSP38, possibly belonging to a new genus in the subfamily Spounavirinae. Arch Virol 164: 875-8. [PubMed]

Gill, J. J. (2014). Revised genome sequence of Staphylococcus aureus bacteriophage K. Genome Announc 2: e01173-13. [PubMed]

Głowacka-Rutkowska, A., M. Ulatowska, J. Empel, M. Kowalczyk, J. Boreczek and M. Łobocka (2020). A kayvirus distant homolog of staphylococcal virulence determinants and VISA biomarker Is a phage lytic enzyme. Viruses 12: e0292. [PubMed]

Goodrich-Blair, H., V. Scarlato, J. M. Gott, M. Q. Xu and D. A. Shub (1990). A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Cell 63: 417-24. [PubMed]

Gupta, R. S., S. Patel, N. Saini and S. Chen (2020). Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 70: 5753-98. [PubMed]

Hoang, D. T., O. Chernomor, A. von Haeseler, B. Q. Minh and L. S. Vinh (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol 35: 518-22. [PubMed]

Jurczak-Kurek, A., T. Gąsior, B. Nejman-Faleńczyk, S. Bloch, A. Dydecka, G. Topka, A. Necel, M. Jakubowska-Deredas, M. Narajczyk, M. Richert, A. Mieszkowska, B. Wróbel, G. Węgrzyn and A. Węgrzyn (2016). Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep 6: 34338. [PubMed]

Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler and L. S. Jermiin (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14: 587-9. [PubMed]

Khalifa, L., Y. Brosh, D. Gelman, S. Coppenhagen-Glazer, S. Beyth, R. Poradosu-Cohen, Y. A. Que, N. Beyth and R. Hazan (2015a). Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol 81: 2696-705. [PubMed]

Khalifa, L., S. Coppenhagen-Glazer, M. Shlezinger, M. Kott-Gutkowski, O. Adini, N. Beyth and R. Hazan (2015b). Complete genome sequence of Enterococcus bacteriophage EFLK1. Genome Announc 3: e01308-15. [PubMed]

Kilcher, S., M. J. Loessner and J. Klumpp (2010). Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 192: 5441-53. [PubMed]

Kishimoto, T., W. Ishida, T. Nasukawa, T. Ujihara, I. Nakajima, T. Suzuki, J. Uchiyama, D. Todokoro, M. Daibata, A. Fukushima, S. Matsuzaki and K. Fukuda (2021). In vitro and in vivo evaluation of three newly isolated bacteriophage candidates, phiEF7H, phiEF14H1, phiEF19G, for treatment of Enterococcus faecalis endophthalmitis. Microorganisms 9: e0212. [PubMed]

Klumpp, J., J. Dorscht, R. Lurz, R. Bielmann, M. Wieland, M. Zimmer, R. Calendar and M. J. Loessner (2008). The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190: 5753-65. [PubMed]

Klumpp, J., R. Lavigne, M. J. Loessner and H. W. Ackermann (2010). The SPO1-related bacteriophages. Arch Virol 155: 1547-61. [PubMed]

Klumpp, J., M. Schmuki, S. Sozhamannan, W. Beyer, D. E. Fouts, V. Bernbach, R. Calendar and M. J. Loessner (2014). The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille. Virology 462-463: 299-308. [PubMed]

Krasowska, A., A. Biegalska, D. Augustyniak, M. Łoś, M. Richert and M. Łukaszewicz (2015). Isolation and characterization of phages infecting Bacillus subtilis. Biomed Res Int 2015: 179597. [PubMed]

Kristensen, D. M., L. Kannan, M. K. Coleman, Y. I. Wolf, A. Sorokin, E. V. Koonin and A. Mushegian (2010). A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26: 1481-7. [PubMed]

Kvachadze, L., N. Balarjishvili, T. Meskhi, E. Tevdoradze, N. Skhirtladze, T. Pataridze, R. Adamia, T. Topuria, E. Kutter, C. Rohde and M. Kutateladze (2011). Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 4: 643-50. [PubMed]

Kwan, T., J. Liu, M. DuBow, P. Gros and J. Pelletier (2005). The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102: 5174-9. [PubMed]

Lancaster, J. C., M. K. Hodde, A. C. Hernandez and G. F. Kuty Everett (2015). Complete genome sequence of Bacillus megaterium myophage Mater. Genome Announc 3: e01424-14. [PubMed]

Lavigne, R. and K. Vandersteegen (2013). Group I introns in Staphylococcus bacteriophages. Future Virology 8: 997–1005.

Lee, J. H., H. Shin, B. Son, S. Heu and S. Ryu (2013). Characterization and complete genome sequence of a virulent bacteriophage B4 infecting food-borne pathogenic Bacillus cereus. Arch Virol 158: 2101-8. [PubMed]

Liu, M., K. M. Bischoff, J. J. Gill, M. D. Mire-Criscione, J. D. Berry, R. Young and E. J. Summer (2015). Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol Biofuels 8: 132. [PubMed]

Łobocka, M., M. S. Hejnowicz, K. Dąbrowski, A. Gozdek, J. Kosakowski, M. Witkowska, M. I. Ulatowska, B. Weber-Dąbrowska, M. Kwiatek, S. Parasion, J. Gawor, H. Kosowska and A. Głowacka (2012). Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era. Adv Virus Res 83: 143-216. [PubMed]

Melo, L. D. R., S. Sillankorva, H. W. Ackermann, A. M. Kropinski, J. Azeredo and N. Cerca (2014). Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. J Gen Virol 95: 506-15. [PubMed]

Nguyen, L. T., H. A. Schmidt, A. von Haeseler and B. Q. Minh (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268-74. [PubMed]

Okubo, S., T. Yanagida, D. J. Fujita and B. M. Olsson-Wilhelm (1972). The genetics of bacteriophage SPO1. Biken journal 15: 81-97. [PubMed]

Oliveira, H., M. Sampaio, L. D. R. Melo, O. Dias, W. H. Pope, G. F. Hatfull and J. Azeredo (2019). Staphylococci phages display vast genomic diversity and evolutionary relationships. BMC Genomics 20: 357. [PubMed]

Parker, M. L. and F. A. Eiserling (1983). Bacteriophage SPO1 structure and morphogenesis. III. SPO1 proteins and synthesis. J Virol 46: 260-9. [PubMed]

Perkus, M. E. and D. A. Shub (1985). Mapping the genes in the terminal redundancy of bacteriophage SPO1 with restriction endonucleases. J Virol 56: 40-8. [PubMed]

Peters, T. L., L. K. Hudson, Y. Song and T. G. Denes (2019). Complete genome sequences of two Listeria phages of the genus Pecentumvirus. Microbiol Resour Announc 8: e01229-19. [PubMed]

Philipson, C. W., L. J. Voegtly, M. R. Lueder, K. A. Long, G. K. Rice, K. G. Frey, B. Biswas, R. Z. Cer, T. Hamilton and K. A. Bishop-Lilly (2018). Characterizing phage genomes for therapeutic applications. Viruses 10: e0188. [PubMed]

Rees, P. J. and B. A. Fry (1981). The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus. J Gen Virol 53: 293-307. [PubMed]

Reveille, A. M., K. A. Eldridge and L. M. Temple (2016). Complete genome sequence of Bacillus megaterium bacteriophage Eldridge. Genome Announc 4: e01728-15. [PubMed]

Sáez Moreno, D., Z. Visram, M. Mutti, M. Restrepo-Córdoba, S. Hartmann, A. I. Kremers, L. Tišáková, S. Schertler, J. Wittmann, B. Kalali, S. Monecke, R. Ehricht, G. Resch and L. Corsini (2021). ε(2)-phages are naturally bred and have a vastly improved host range in Staphylococcus aureus over wild type phages. Pharmaceuticals (Basel) 14: e0325. [PubMed]

Schuch, R. and V. A. Fischetti (2009). The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 4: e6532. [PubMed]

Sievers, F., A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson and D. G. Higgins (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7: 539. [PubMed]

Song, Y., T. L. Peters, D. W. Bryan, L. K. Hudson and T. G. Denes (2021). Characterization of a novel group of Listeria phages that target serotype 4b Listeria monocytogenes. Viruses 13: e0671. [PubMed]

Stewart, C. R., S. R. Casjens, S. G. Cresawn, J. M. Houtz, A. L. Smith, M. E. Ford, C. L. Peebles, G. F. Hatfull, R. W. Hendrix, W. M. Huang and M. L. Pedulla (2009). The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388: 48-70. [PubMed]

Uchiyama, J., M. Rashel, I. Takemura, H. Wakiguchi and S. Matsuzaki (2008). In silico and in vivo evaluation of bacteriophage phiEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol 74: 4149-63. [PubMed]

van Zyl, L. J., S. Nemavhulani, J. Cass, D. A. Cowan and M. Trindade (2016). Three novel bacteriophages isolated from the East African Rift Valley soda lakes. Virol J 13: 204. [PubMed]

Willms, I. M., M. Hoppert and R. Hertel (2017). Characterization of Bacillus subtilis viruses vB_BsuM-Goe2 and vB_BsuM-Goe3. Viruses 9: e0146. [PubMed]

Yuan, Y., Q. Peng, D. Wu, Z. Kou, Y. Wu, P. Liu and M. Gao (2015). Effects of actin-like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Appl Environ Microbiol 81: 339-50. [PubMed]