References: Pospiviroidae
Antignus, Y., O. Lachman and M. Pearlsman (2007). Spread of tomato apical stunt viroid (TASVd) in greenhouse tomato crops is associated with seed transmission and bumble bee activity. Plant Dis 91: 47-50. [PubMed]
Baumstark, T., A. R. Schröder and D. Riesner (1997). Viroid processing: switch from cleavage to ligation is driven by a change from a tetraloop to a loop E conformation. EMBO J 16: 599-610. [PubMed]
Bojić, T., Y. Beeharry, D. J. Zhang and M. Pelchat (2012). Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J Gen Virol 93: 1591-1600. [PubMed]
Bonfiglioli, R. G., G. I. McFadden and R. H. Symons (1994). In situ hybridization localizes avocado sunblotch viroid on chloroplast thylakoid membranes and coconut cadang cadang viroid in the nucleus. Plant J 6: 99-103.
Branch, A. D. and H. D. Robertson (1984). A replication cycle for viroids and other small infectious RNA's. Science223: 450-5. [PubMed]
Castellano, M., G. Martinez, M. C. Marques, J. Moreno-Romero, C. Köhler, V. Pallas and G. Gomez (2016). Changes in the DNA methylation pattern of the host male gametophyte of viroid-infected cucumber plants. J Exp Bot67: 5857-5868. [PubMed]
Daròs, J. A. and R. Flores (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proc Natl Acad Sci USA 101: 6792-7. [PubMed]
Di Serio, F., R. Flores, J. T. Verhoeven, S. F. Li, V. Pallás, J. W. Randles, T. Sano, G. Vidalakis and R. A. Owens(2014). Current status of viroid taxonomy. Arch Virol 159: 3467-78. [PubMed]
Di Serio, F., A. E. Martínez de Alba, B. Navarro, A. Gisel and R. Flores (2010). RNA-dependent RNA polymerase 6 delays accumulation and precludes meristem invasion of a viroid that replicates in the nucleus. J Virol 84: 2477-89. [PubMed]
Di Serio, F., E. M. Torchetti, R. Flores and T. Sano (2017). Other apscaviroids infecting pome fruit trees. In Viroids and Satellites, pp. 229-241. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Palukaitis. Oxford, UK: Academic Press.
Ding, B., M. O. Kwon, R. Hammond and R. Owens (1997). Cell-to-cell movement of potato spindle tuber viroid. Plant J 12: 931-6. [PubMed]
Fadda, Z., J. A. Daròs, R. Flores and N. Duran-Vila (2003). Identification in eggplant of a variant of citrus exocortis viroid (CEVd) with a 96 nucleotide duplication in the right terminal region of the rod-like secondary structure. Virus Res 97: 145-9. [PubMed]
Faggioli, F., M. Luigi, V. Sveikauskas, T. Olivier, M. Virscek Marn, I. Mavric Plesko, K. De Jonghe, N. Van Bogaert and S. Grausgruber-Gröger (2015). An assessment of the transmission rate of four pospiviroid species through tomato seeds. Eur J Plant Pathol 143: 613-617. [
Feldstein, P. A., Y. Hu and R. A. Owens (1998). Precisely full length, circularizable, complementary RNA: an infectious form of potato spindle tuber viroid. Proc Natl Acad Sci USA 95: 6560-5. [PubMed]
Flores, R., F. Di Serio and C. Hernández (1997). Viroids: The non-coding genomes. Semin Virol 8: 65-73. [
Flores, R., S. Gago-Zachert, P. Serra, R. Sanjuán and S. F. Elena (2014). Viroids: survivors from the RNA world? Annu Rev Microbiol 68: 395-414. [PubMed]
Flores, R., M. E. Gas, D. Molina-Serrano, M. A. Nohales, A. Carbonell, S. Gago, M. De la Pena and J. A. Daros(2009). Viroid replication: rolling-circles, enzymes and ribozymes. Viruses 1: 317-34. [PubMed]
Flores, R., S. Minoia, A. López-Carrasco, S. Delgado, Á. E. Martínez de Alba and K. Kalantidis (2017). Viroid replication. In Viroids and Satellites, pp. 71-81. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Flores, R. and J. S. Semancik (1982). Properties of a cell-free system for synthesis of citrus exocortis viroid. Proc Natl Acad Sci U S A 79: 6285-8. [PubMed]
Galindo, J. A., C. Lopez and T. Aguilar (1989). Discovery of the transmitting agent of tomato planta macho viroid. Revista Mexicana de Fitopatologia 7: 61-65. [
Gas, M. E., C. Hernández, R. Flores and J. A. Daròs (2007). Processing of nuclear viroids in vivo: an interplay between RNA conformations. PLoS Pathog 3: e182. [PubMed]
Gas, M. E., D. Molina-Serrano, C. Hernández, R. Flores and J. A. Daròs (2008). Monomeric linear RNA of citrus exocortis viroid resulting from processing in vivo has 5'-phosphomonoester and 3'-hydroxyl termini: implications for the RNase and RNA ligase involved in replication. J Virol 82: 10321-5. [PubMed]
Giguère, T., C. R. Adkar-Purushothama and J. P. Perreault (2014). Comprehensive secondary structure elucidation of four genera of the family Pospiviroidae. PLoS One 9: e98655. [PubMed]
Giguère, T. and J. P. Perreault (2017). Classification of the Pospiviroidae based on their structural hallmarks. PLoS One 12: e0182536. [PubMed]
Gómez, G. and V. Pallás (2001). Identification of an in vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol Plant Microbe Interact 14: 910-3. [PubMed]
Gómez, G. and V. Pallás (2004). A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA. J Virol 78: 10104-10. [PubMed]
Grill, L. K. and J. S. Semancik (1978). RNA sequences complementary to citrus exocortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proc Natl Acad Sci U S A 75: 896-900. [PubMed]
Habili, N. (2017). Apscaviroids infecting grapevine. In Viroids and Satellites, pp. 251-262. Edited by A. Hadidi, R. Flores, J. W. Randles & P. P. Oxford, UK: Academic Press.
Hadidi, A., A. J. Hansen, C. L. Parish and X. Yang (1991). Scar skin and dapple apple viroids are seed-borne and persistent in infected apple trees. Res Virol 142: 289-96. [PubMed]
Hammond, R., D. R. Smith and T. O. Diener (1989). Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences. Nucleic Acids Res 17: 10083-94. [PubMed]
Haseloff, J., N. A. Mohamed and R. H. Symons (1982). Viroid RNAs of cadang-cadang disease of coconuts. Nature299: 316-321. [
Hataya, T., T. Tsushima and T. Sano (2017). Hop stunt viroid. In Viroids and Satellites, pp. 199-210. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Henco, K., H. L. Sänger and D. Riesner (1979). Fine structure melting of viroids as studied by kinetic methods. Nucleic Acids Res 6: 3041-59. [PubMed]
Ishikawa, M., T. Meshi, T. Ohno, Y. Okada, T. Sano, I. Ueda and E. Shikata (1984). A revised replication cycle for viroids: the role of longer than unit length RNA in viroid replication. Mol Gen Genet 196: 421-8. [PubMed]
Jakse, J., S. Radisek, T. Pokorn, J. Matousek and B. Javornik (2015). Deep‐sequencing revealed Citrus bark cracking viroid (CBCV d) as a highly aggressive pathogen on hop. Plant Pathol 64: 831-842.
Keese, P. and R. H. Symons (1985). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc Natl Acad Sci U S A 82: 4582-6. [PubMed]
Khoury, J., R. Singh, A. Boucher and D. Coombs (1988). Concentration and distribution of mild and severe strains of potato spindle tuber viroid in cross-protected tomato plants. Phytopathology 78: 1331-1336.
Kolonko, N., O. Bannach, K. Aschermann, K. H. Hu, M. Moors, M. Schmitz, G. Steger and D. Riesner (2006). Transcription of potato spindle tuber viroid by RNA polymerase II starts in the left terminal loop. Virology 347: 392-404. [PubMed]
Koltunow, A. M. and M. A. Rezaian (1989). Grapevine viroid 1B, a new member of the apple scar skin viroid group contains the left terminal region of tomato planta macho viroid. Virology 170: 575-8. [PubMed]
Kryczyński, S., E. Paduch‐Cichal and L. Skrzeczkowski (1988). Transmission of three viroids through seed and pollen of tomato plants. J Phytopathol 121: 51-57. [
Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35: 1547-1549. [PubMed]
Lavagi, I., J. Matoušek and G. Vidalakis (2017). Other cocadviroids. In Viroids and Satellites, pp. 275-287. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
López-Carrasco, A. and R. Flores (2017). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A naked rod-like conformation similar but not identical to that observed in vitro. RNA Biol 14: 1046-1054. [PubMed]
Matoušek, J., L. Orctová, J. Skopek, K. Pesina and G. Steger (2008). Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol Chem 389: 905-18. [PubMed]
Matoušek, J. and J. Patzak (2000). A low transmissibility of hop latent viroid through a generative phase of Humulus lupulus L. Biol Plant 43: 145-148.
Matsushita, Y. and Y. Shima (2015). Effect of low temperature on the distribution of Chrysanthemum stunt viroid in Chrysanthemum morifolium. Phytoparasitica 43: 609-614. [
Matsushita, Y., T. Usugi and S. Tsuda (2011). Distribution of tomato chlorotic dwarf viroid in floral organs of tomato. Eur J Plant Pathol 130: 441-447. [
Matsuura, S., Y. Matsushita, R. Kozuka, S. Shimizu and S. Tsuda (2010). Transmission of Tomato chlorotic dwarf viroid by bumblebees (Bombus ignitus) in tomato plants. Eur J Plant Pathol 126: 111-115.
Mühlbach, H. P. and H. L. Sänger (1979). Viroid replication is inhibited by alpha-amanitin. Nature 278: 185-8. [PubMed]
Navarro, B. and R. Flores (1997). Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci USA 94: 11262-7. [PubMed]
Niblett, C. L., E. Dickson, K. H. Fernow, R. K. Horst and M. Zaitlin (1978). Cross protection among four viroids. Virology 91: 198-203. [PubMed]
Nie, X. and R. P. Singh (2017). Coleus blumei viroids. In Viroids and Satellites,, pp. 289-295. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Nielsen, S. L., A. Enkegaard, M. Nicolaisen, P. Kryger, M. V. Marn, I. M. Pleško, A. Kahrer and R. A. Gottsberger (2012). No transmission of Potato spindle tuber viroid shown in experiments with thrips (Frankliniella occidentalis, Thrips tabaci), honey bees (Apis mellifera) and bumblebees (Bombus terrestris). Eur J Plant Pathol 133: 505-509.
Nohales, M., R. Flores and J. A. Daròs (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc Natl Acad Sci U S A 109: 13805-10. [PubMed]
Owens, R. A., M. Blackburn and B. Ding (2001). Possible involvement of the phloem lectin in long-distance viroid movement. Mol Plant Microbe Interact 14: 905-9. [PubMed]
Pacumbaba, E., B. Zelazny, J. Orense and E. Rillo (1994). Evidence for pollen and seed transmission of the coconut cadang‐cadang viroid in Cocos nucifera. J Phytopathol 142: 37-42.
Palacio-Bielsa, A., J. Romero-Durbán and N. Duran-Vila (2004). Characterization of citrus HSVd isolates. Arch Virol 149: 537-52. [PubMed]
Palukaitis, P. (1987). Potato spindle tuber viroid: Investigation of the long-distance, intra-plant transport route. Virology 158: 239-41. [PubMed]
Polivka, H., U. Staub and H. J. Gross (1996). Variation of viroid profiles in individual grapevine plants: novel grapevine yellow speckle viroid 1 mutants show alterations of hairpin I. J Gen Virol 77: 155-61. [PubMed]
Puchta, H., K. Ramm and H. L. Sänger (1988). The molecular structure of hop latent viroid (HLV), a new viroid occurring worldwide in hops. Nucleic Acids Res 16: 4197-216. [PubMed]
Qi, Y. and B. Ding (2003a). Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. Plant Cell 15: 2566-77. [PubMed]
Qi, Y. and B. Ding (2003b). Inhibition of cell growth and shoot development by a specific nucleotide sequence in a noncoding viroid RNA. Plant Cell 15: 1360-74. [PubMed]
Qi, Y., T. Pélissier, A. Itaya, E. Hunt, M. Wassenegger and B. Ding (2004). Direct role of a viroid RNA motif in mediating directional RNA trafficking across a specific cellular boundary. Plant Cell 16: 1741-52. [PubMed]
Querci, M., R. A. Owens, I. Bartolini, V. Lazarte and L. F. Salazar (1997). Evidence for heterologous encapsidation of potato spindle tuber viroid in particles of potato leafroll virus. J Gen Virol 78: 1207-11. [PubMed]
Rackwitz, H. R., W. Rohde and H. L. Sänger (1981). DNA-dependent RNA polymerase II of plant origin transcribes viroid RNA into full-length copies. Nature 291: 297-301. [PubMed]
Randles, J. W. (2003). Economic impact of viroid diseases. In Viroids, pp. 3-11. Edited by A. Hadidi, R. Flores, J. W. Randles & J. S. Semancik: CSIRO.
Reanwarakorn, K. and J. S. Semancik (1998). Regulation of pathogenicity in hop stunt viroid-related group II citrus viroids. J Gen Virol 79: 3163-71. [PubMed]
Rezaian, M. A. (1990). Australian grapevine viroid--evidence for extensive recombination between viroids. Nucleic Acids Res 18: 1813-8. [PubMed]
Riesner, D. (1991). Viroids: from thermodynamics to cellular structure and function. Mol Plant Microbe Interact 4: 122-31. [PubMed]
Riesner, D., K. Henco, U. Rokohl, G. Klotz, A. K. Kleinschmidt, H. Domdey, P. Jank, H. J. Gross and H. L. Sänger (1979). Structure and structure formation of viroids. J Mol Biol 133: 85-115. [PubMed]
Rodriguez, M. J. B., G. Vadamalai and J. W. Randles (2017). Economic significance of palm tree viroids. In Viroids and Satellites, pp. 39-49. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Sano, T., T. Candresse, R. W. Hammond, T. O. Diener and R. A. Owens (1992). Identification of multiple structural domains regulating viroid pathogenicity. Proc Natl Acad Sci U S A 89: 10104-8. [PubMed]
Schindler, I. M. and H. P. Mühlbach (1992). Involvement of nuclear DNA-dependent RNA polymerases in potato spindle tuber viroid replication: a reevaluation. Plant Sci 84: 221-229.
Schnölzer, M., B. Haas, K. Raam, H. Hofmann and H. L. Sänger (1985). Correlation between structure and pathogenicity of potato spindle tuber viroid (PSTV). EMBO J 4: 2181-90. [PubMed]
Semancik, J., D. Gumpf and J. Bash (1991). Interactions among the group II viroids: a potential for protection from the Cachexia disease? International Organization of Citrus Virologists Conference Proceedings (1957-2010). 11: Retrieved from https://escholarship.org/uc/item/6dq605kp.
Semancik, J. S., J. A. Szychowski, A. G. Rakowski and R. H. Symons (1994). A stable 463 nucleotide variant of citrus exocortis viroid produced by terminal repeats. J Gen Virol 75: 727-32. [PubMed]
Serra, P., C. J. Barbosa, J. A. Daròs, R. Flores and N. Duran-Vila (2008). Citrus viroid V: molecular characterization and synergistic interactions with other members of the genus Apscaviroid. Virology 370: 102-12. [PubMed]
Singh, R. P. (1970). Seed transmission of potato spindle tuber virus in tomato and potato. Am Potato J 47: 225-227.
Singh, R. P., A. Boucher and T. H. Somerville (1992). Detection of potato spindle tuber viroid in the pollen and various parts of potato plant pollinated with viroid-infected pollen. Plant Dis 76: 951-953.
Singh, R. P. and A. D. Dilworth (2009). Tomato chlorotic dwarf viroid in the ornamental plant Vinca minor and its transmission through tomato seed. Eur J Plant Pathol 123: 111.
Škorić, D. (2017). Viroid biology. In Viroids and Satellites, pp. 53-61. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Spieker, R. L. (1996). In vitro-generated 'inverse' chimeric Coleus blumei viroids evolve in vivo into infectious RNA replicons. J Gen Virol 77: 2839-46. [PubMed]
Spiesmacher, E., H. P. Mühlbach, M. Schnölzer, B. Haas and H. L. Sänger (1983). Oligomeric forms of potato spindle tuber viroid (PSTV) and of its complementary RNA are present in nuclei isolated from viroid-infected potato cells. Biosci Rep 3: 767-74. [PubMed]
Steger, G. and J. P. Perreault (2016). Structure and associated biological functions of viroids. Adv Virus Res 94: 141-72. [PubMed]
Syller, J., W. Marczewski and J. Pawłowicz (1997). Transmission by aphids of potato spindle tuber viroid encapsidated by potato leafroll luteovirus particles. Eur J Plant Pathol 103: 285-289.
Tessitori, M. (2017). Apscaviroids infecting citrus trees. In Viroids and Satellites, pp. 243-249. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Vadamalai, G., S. S. Thanarajoo, H. Joseph, L. L. Kong and J. W. Randles (2017). Coconut cadang-cadang viroid and coconut tinangaja viroid. In Viroids and Satellite, pp. 263-273. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
Verhoeven, J. T., C. C. Jansen, J. W. Roenhorst, R. Flores and M. de la Peña (2009). Pepper chat fruit viroid: biological and molecular properties of a proposed new species of the genus Pospiviroid. Virus Res 144: 209-14. [PubMed]
Verhoeven, J. T. J., R. W. Hammond and G. Stancanelli (2017). Economic significance of viroids in ornamental crops. In Viroids and Satellites, pp. 27-38. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Palukaitis. Oxford, UK: Academic Press.
Verhoeven, J. T. J., H. Koenraadt, A. Jodlowska, L. Hüner and J. Roenhorst (2020). Pospiviroid infections in Capsicum annuum: disease symptoms and lack of seed transmission. Eur J Plant Pathol 156: 21-29.
Verhoeven, J. T. J., E. T. M. Meekes, J. W. Roenhorst, R. Flores and P. Serra (2013). Dahlia latent viroid: a recombinant new species of the family Pospiviroidae posing intriguing questions about its origin and classification. J Gen Virol 94: 711-719. [PubMed]
Vernière, C., X. Perrier, C. Dubois, A. Dubois, L. Botella, C. Chabrier, J. M. Bové and N. D. Vila (2006). Interactions between citrus viroids affect symptom expression and field performance of clementine trees grafted on trifoliate orange. Phytopathology 96: 356-68. [PubMed]
Visvader, J. E. and R. H. Symons (1985). Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acids Res 13: 2907-20. [PubMed]
Walia, Y., S. Dhir, A. A. Zaidi and V. Hallan (2015). Apple scar skin viroid naked RNA is actively transmitted by the whitefly Trialeurodes vaporariorum. RNA Biol 12: 1131-8. [PubMed]
Wall, G. C. and J. W. Randles (2003). Coconut tinangaja viroid. In Viroids, pp. 242-245. Edited by A. Hadidi, R. Flores, J. W. Randles & J. Semancik. Collingwood, Australia: CSIRO.
Wan Chow Wah, Y. F. and R. H. Symons (1999). Transmission of viroids via grape seeds. J Phytopathol 147: 285-291.
Wang, Y., C. L. Zirbel, N. B. Leontis and B. Ding (2018). RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLoS Pathog 14: e1006801. [PubMed]
Warrilow, D. and R. H. Symons (1999). Citrus exocortis viroid RNA is associated with the largest subunit of RNA polymerase II in tomato in vivo. Arch Virol 144: 2367-75. [PubMed]
Wassenegger, M., S. Heimes and H. L. Sänger (1994). An infectious viroid RNA replicon evolved from an in vitro-generated non-infectious viroid deletion mutant via a complementary deletion in vivo. EMBO J 13: 6172-7. [PubMed]
Woo, Y. M., A. Itaya, R. A. Owens, L. Tang, R. W. Hammond, H. C. Chou, M. M. Lai and B. Ding (1999). Characterization of nuclear import of potato spindle tuber viroid RNA in permeabilized protoplasts. Plant J 17: 627-635.
Wu, J., N. B. Leontis, C. L. Zirbel, D. M. Bisaro and B. Ding (2019). A three-dimensional RNA motif mediates directional trafficking of Potato spindle tuber viroid from epidermal to palisade mesophyll cells in Nicotiana benthamiana. PLoS Pathog 15: e1008147. [PubMed]
Yanagisawa, H. and Y. Matsushita (2018). Differences in dynamics of horizontal transmission of Tomato planta macho viroid and Potato spindle tuber viroid after pollination with viroid-infected pollen. Virology 516: 258-264. [PubMed]
Zhang, Z., Y. Lee, C. Spetz, J. L. Clarke, Q. Wang and D. R. Blystad (2015). Invasion of shoot apical meristems by Chrysanthemum stunt viroid differs among Argyranthemum cultivars. Front Plant Sci 6: 53. [PubMed]
Zhao, Y., R. A. Owens and R. W. Hammond (2001). Use of a vector based on Potato virus X in a whole plant assay to demonstrate nuclear targeting of Potato spindle tuber viroid. J Gen Virol 82: 1491-1497. [PubMed]
Zhu, Y., L. Green, Y. M. Woo, R. Owens and B. Ding (2001). Cellular basis of potato spindle tuber viroid systemic movement. Virology 279: 69-77. [PubMed]