References: Avsunviroidae
Ambrós, S., Hernández, C., Desvignes, J. C. & Flores, R. (1998). Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implications of the existence of constraints limiting the heterogeneity of viroid quasispecies. J Virol 72, 7397-7406. [PubMed]
Barba, M., Ragozzino, E. & Faggioli, F. (2007). Pollen transmission of peach latent mosaic viroid. J Plant Pathol 89, 287-289.
Branch, A. D. & Robertson, H. D. (1984). A replication cycle for viroids and other small infectious RNA's. Science 223, 450-455. [PubMed]
Bussière, F., Ouellet, J., Côté, F., Lévesque, D. & Perreault, J. P. (2000). Mapping in solution shows the peach latent mosaic viroid to possess a new pseudoknot in a complex, branched secondary structure. J Virol 74, 2647-2654. [PubMed]
Carbonell, A., De la Peña, M., Flores, R. & Gago, S. (2006). Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Res 34, 5613-5622. [PubMed]
Da Graça, J. & Van Vuuren, S. (1981). Host range studies on avocado sunblotch. South African Avocado Growers Assoc Yearbook 4, 81-82.
Daròs, J. A., Marcos, J. F., Hernández, C. & Flores, R. (1994). Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc Natl Acad Sci USA 91, 12813-12817. [PubMed]
de la Peña, M., Navarro, B. & Flores, R. (1999). Mapping the molecular determinant of pathogenicity in a hammerhead viroid: a tetraloop within the in vivo branched RNA conformation. Proc Natl Acad Sci USA 96, 9960-9965. [PubMed]
Desjardins, P., Drake, R., Sasaki, P., Atkins, E. & Bergh, B. (1984). Pollen transmission of avocado sunblotch viroid and the fate of the pollen recipient tree. Phytopathology 74, 845-845.
Desvignes, J. (1976). The virus diseases detected in greenhouse and in field by the peach seedling GF 305 indicator. Acta Horticulturae 67, 315-323.
Diener, T. O. (1989). Circular RNAs: relics of precellular evolution? Proc Natl Acad Sci USA 86, 9370-9374. [PubMed]
Dufour, D., de la Peña, M., Gago, S., Flores, R. & Gallego, J. (2009). Structure-function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop-loop interaction motif conserved in most natural hammerheads. Nucleic Acids Res 37, 368-381. [PubMed]
Elena, S. F., Dopazo, J., de la Peña, M., Flores, R., Diener, T. O. & Moya, A. (2001). Phylogenetic analysis of viroid and viroid-like satellite RNAs from plants: a reassessment. J Mol Evol 53, 155-159. [PubMed]
Elena, S. F., Dopazo, J., Flores, R., Diener, T. O. & Moya, A. (1991). Phylogeny of viroids, viroidlike satellite RNAs, and the viroidlike domain of hepatitis delta virus RNA. Proc Natl Acad Sci USA 88, 5631-5634. [PubMed]
Fadda, Z., Daròs, J. A., Fagoaga, C., Flores, R. & Duran-Vila, N. (2003). Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J Virol 77, 6528-6532. [PubMed]
Flores, R., Daròs, J. A. & Hernández, C. (2000). Avsunviroidae family: viroids containing hammerhead ribozymes. Adv Virus Res 55, 271-323. [PubMed]
Flores, R., Delgado, S., Rodio, M. E., Ambrós, S., Hernández, C. & Serio, F. D. (2006). Peach latent mosaic viroid: not so latent. Mol Plant Pathol 7, 209-221. [PubMed]
Flores, R., Grubb, D., Elleuch, A., Nohales, M. Á., Delgado, S. & Gago, S. (2011). Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: variations on a theme. RNA Biol 8, 200-206. [PubMed]
Flores, R., Navarro, B., Delgado, S., Hernández, C., Xu, W.-X., Barba, M., Hadidi, A. & Di Serio, F. (2017). Peach latent mosaic viroid in infected peach. In Viroids and Satellites, pp. 307-316. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis: Elsevier.
Forster, A. C., Davies, C., Sheldon, C. C., Jeffries, A. C. & Symons, R. H. (1988). Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265-267. [PubMed]
Forster, A. C. & Symons, R. H. (1987). Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211-220. [PubMed]
Gago, S., De la Peña, M. & Flores, R. (2005). A kissing-loop interaction in a hammerhead viroid RNA critical for its in vitro folding and in vivo viability. RNA 11, 1073-1083. [PubMed]
Giguère, T., Adkar-Purushothama, C. R., Bolduc, F. & Perreault, J. P. (2014). Elucidation of the structures of all members of the Avsunviroidae family. Mol Plant Pathol 15, 767-779. [PubMed]
Giguère, T. & Perreault, J. P. (2017). Classification of the Pospiviroidae based on their structural hallmarks. PLoS One 12, e0182536. [PubMed]
Gómez, G. & Pallás, V. (2012). A pathogenic non coding RNA that replicates and accumulates in chloroplasts traffics to this organelle through a nuclear-dependent step. Plant Signal Behav 7, 882-884. [PubMed]
Hernández, C., Di Serio, F., Ambrós, S., Daròs, J. A. & Flores, R. (2006). An element of the tertiary structure of Peach latent mosaic viroid RNA revealed by UV irradiation. J Virol 80, 9336-9340. [PubMed]
Hernández, C. & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proc Natl Acad Sci USA 89, 3711-3715. [PubMed]
Horst, R. (1975). Detection of a latent infectious agent that protects against infection by chrysanthemum chlorotic mottle viroid. Phytopathology 65, 1000-1003.
Howell, W., Skrzeczkowski, L., Mink, G., Nunez, A. & Wessels, T. (1998). Non-transmission of apple scar skin viroid and peach latent mosaic viroid through seed. Acta Horticulturae 472, 635-640.
Hutchins, C. J., Rathjen, P. D., Forster, A. C. & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14, 3627-3640. [PubMed]
Jenkins, G. M., Woelk, C. H., Rambaut, A. & Holmes, E. C. (2000). Testing the extent of sequence similarity among viroids, satellite RNAs, and hepatitis delta virus. J Mol Evol 50, 98-102. [PubMed]
Jukes, T. & Cantor, C. (1969). Evolution of protein molecules. In ‘Mammalian Protein Metabolism’.(Ed. H.N. Munro.) pp. 21–132: Academic Press: New York.
Kuhn, D. N., Geering, A. D. W. & Dixon, J. (2017). Avocado sunblotch viroid. In Viroids and Satellites, pp. 297–305. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Palukaitis. Oxford, UK: Academic Press.
Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874. [PubMed]
Kyriakopoulou, P. E., Giunchedi, L., Barba, M., Boubourakas, I. N., Kaponi, M. S. & Hadidi, A. (2017). Peach latent mosaic viroid in temperate fruit trees other than peach. In Viroids and Satellites, pp. 317-329. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK: Academic Press.
López-Carrasco, A. & Flores, R. (2017a). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro. RNA Biol 14, 1046-1054. [PubMed]
López-Carrasco, A. & Flores, R. (2017b). The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. J Gen Virol 98, 1913-1922. [PubMed]
López-Carrasco, A., Gago-Zachert, S., Mileti, G., Minoia, S., Flores, R. & Delgado, S. (2016). The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in their in vivo RNA conformations. RNA Biol 13, 83-97. [PubMed]
Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C. & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology 313, 492-501. [PubMed]
Navarro, B. & Flores, R. (1997). Chrysanthemum chlorotic mottle viroid: unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proc Natl Acad Sci USA 94, 11262-11267. [PubMed]
Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R. & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. Plant J 70, 991-1003. [PubMed]
Navarro, B., Rubino, L. & Di Serio, F. (2017). Small circular satellite RNAs. In Viroids and Satellites, pp. 659-669. Edited by A. Hadidi, R. Flores, J. W. Randles & Paukaitis P. Oxford, UK: Academic Press.
Navarro, J. A., Vera, A. & Flores, R. (2000). A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268, 218-225. [PubMed]
Nohales, M. Á., Molina-Serrano, D., Flores, R. & Daròs, J. A. (2012). Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J Virol 86, 8269-8276. [PubMed]
Rakowski, A. G. & Symons, R. H. (1989). Comparative sequence studies of variants of avocado sunblotch viroid. Virology 173, 352-356. [PubMed]
Rodio, M. E., Delgado, S., De Stradis, A., Gómez, M. D., Flores, R. & Di Serio, F. (2007). A viroid RNA with a specific structural motif inhibits chloroplast development. Plant Cell 19, 3610-3626. [PubMed]
Semancik, J. S. & Szychowski, J. A. (1994). Avocado sunblotch disease: a persistent viroid infection in which variants are associated with differential symptoms. J Gen Virol 75 ( Pt 7), 1543-1549. [PubMed]
Škorić, D. (2017). Viroid biology. In Viroids and Satellites, pp. 53-61. Edited by A. Hadidi, R. Flores, J. W. Randles & P. Paukaitis. Oxford, UK Academic Press.
Symons, R. H. (1981). Avocado sunblotch viroid: primary sequence and proposed secondary structure. Nucleic Acids Res 9, 6527-6537. [PubMed]
Wallace, J. & Drake, R. (1962). High rate of seed transmission of avocado sun-blotch virus from symptomless trees and origin of such trees. Phytopathology 52, 237-241.
Wu, Q., Wang, Y., Cao, M., Pantaleo, V., Burgyan, J., Li, W. X. & Ding, S. W. (2012). Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proc Natl Acad Sci USA 109, 3938-3943. [PubMed]
Zhang, Z., Qi, S., Tang, N., Zhang, X., Chen, S., Zhu, P., Ma, L., Cheng, J., Xu, Y., Lu, M., Wang, H., Ding, S. W., Li, S. & Wu, Q. (2014). Discovery of replicating circular RNAs by RNA-seq and computational algorithms. PLoS Pathog 10, e1004553. [PubMed]