ICTV Report

References: Papillomaviridae

 

Agalliu, I., Gapstur, S., Chen, Z., Wang, T., Anderson, R. L., Teras, L., Kreimer, A. R., Hayes, R. B., Freedman, N. D. & Burk, R. D. (2016). Associations of oral α-, β-, and γ-human papillomavirus types with risk of incident head and neck cancer. JAMA Oncology 2, 599-606. [PubMed]

Arnold, A. W. & Hofbauer, G. F. (2012). Human papillomavirus and squamous cell cancer of the skin--epidermodysplasia verruciformis-associated human papillomavirus revisited. Curr Probl Dermatol 43, 49-56. [PubMed]

Bergvall, M., Melendy, T. & Archambault, J. (2013). The E1 proteins. Virology 445, 35-56. [PubMed]

Bernard, H. U., Chan, S. Y. & Delius, H. (1994). Evolution of papillomaviruses. Curr Top Microbiol Immunol 186, 33-54. [PubMed]

Bravo, I. G. & Alonso, A. (2004). Mucosal human papillomaviruses encode four different E5 proteins whose chemistry and phylogeny correlate with malignant or benign growth. J Virol 78, 13613-13626. [PubMed] 

Brimer, N., Drews, C. M. & Vande Pol, S. B. (2017). Association of papillomavirus E6 proteins with either MAML1 or E6AP clusters E6 proteins by structure, function, and evolutionary relatedness. PLoS Pathog 13, e1006781. [PubMed]

Bristol, M. L., Das, D. & Morgan, I. M. (2017). Why human papillomaviruses activate the DNA damage response (DDR) and how cellular and viral replication persists in the presence of DDR signaling. Viruses 9, E268. [PubMed]

Buck, C. B., Day, P. M. & Trus, B. L. (2013). The papillomavirus major capsid protein L1. Virology 445, 169-174. [PubMed]

Burk, R. D., Chen, Z. & Van Doorslaer, K. (2009). Human papillomaviruses: genetic basis of carcinogenicity. Public Health Genomics 12, 281-290. [PubMed]

Campos, S. K. (2017). Subcellular trafficking of the papillomavirus genome during initial infection: the remarkable abilities of minor capsid protein L2. Viruses 9, E370. [PubMed]

Carter, J. J., Koutsky, L. A., Hughes, J. P., Lee, S. K., Kuypers, J., Kiviat, N. & Galloway, D. A. (2000). Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. J Infect Dis 181, 1911-1919. [PubMed]

CDC (2017). Genital HPV Infection—Centers for Disease Control and Prevention Fact Sheet: Genital HPV Infection.

Christensen, N. D., Cladel, N. M., Reed, C. A., Budgeon, L. R., Embers, M. E., Skulsky, D. M., McClements, W. L., Ludmerer, S. W. & Jansen, K. U. (2001). Hybrid papillomavirus L1 molecules assemble into virus-like particles that reconstitute conformational epitopes and induce neutralizing antibodies to distinct HPV types. Virology 291, 324-334. [PubMed]

Cubie, H. A. (2013). Diseases associated with human papillomavirus infection. Virology 445, 21-34. [PubMed] 

Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9, 772. [PubMed]

de Villiers, E. M., Fauquet, C., Broker, T. R., Bernard, H. U. & zur Hausen, H. (2004). Classification of papillomaviruses. Virology 324, 17-27. [PubMed]

DiMaio, D. & Petti, L. M. (2013). The E5 proteins. Virology 445, 99-114. [PubMed]

Doorbar, J. (2013). The E4 protein; structure, function and patterns of expression. Virology 445, 80-98. [PubMed]

Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113. [PubMed]

Finnen, R. L., Erickson, K. D., Chen, X. S. & Garcea, R. L. (2003). Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 77, 4818-4826. [PubMed]

Guan, J., Bywaters, S. M., Brendle, S. A., Ashley, R. E., Makhov, A. M., Conway, J. F., Christensen, N. D. & Hafenstein, S. (2017). Cryoelectron microscopy maps of human papillomavirus 16 reveal L2 densities and heparin binding site. Structure 25, 253-263. [PubMed]

Kanodia, S., Fahey, L. M. & Kast, W. M. (2007). Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 7, 79-89. [PubMed]

Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874. [PubMed]

Larsen, P. M., Storgaard, L. & Fey, S. J. (1987). Proteins present in bovine papillomavirus particles. J Virol 61, 3596-3601. [PubMed]

Ludmerer, S. W., Benincasa, D., Mark, G. E., 3rd & Christensen, N. D. (1997). A neutralizing epitope of human papillomavirus type 11 is principally described by a continuous set of residues which overlap a distinct linear, surface-exposed epitope. J Virol 71, 3834-3839. [PubMed]

McBride, A. A. (2008). Replication and partitioning of papillomavirus genomes. Adv Virus Res 72, 155-205. [PubMed] 

McBride, A. A. (2013). The papillomavirus E2 proteins. Virology 445, 57-79. [PubMed]

McClements, W. L., Wang, X. M., Ling, J. C., Skulsky, D. M., Christensen, N. D., Jansen, K. U. & Ludmerer, S. W. (2001). A novel human papillomavirus type 6 neutralizing domain comprising two discrete regions of the major capsid protein L1. Virology 289, 262-268. [PubMed] 

Meyers, J., Ryndock, E., Conway, M. J., Meyers, C. & Robison, R. (2014). Susceptibility of high-risk human papillomavirus type 16 to clinical disinfectants. J Antimicrob Chemother 69, 1546-1550. [PubMed] 

Meyers, J. M., Uberoi, A., Grace, M., Lambert, P. F. & Munger, K. (2017). Cutaneous HPV8 and MmuPV1 E6 proteins target the NOTCH and TGF-beta tumor suppressors to inhibit differentiation and sustain keratinocyte proliferation. PLoS Pathog 13, e1006171. [PubMed] 

Rector, A., Lemey, P., Tachezy, R., Mostmans, S., Ghim, S. J., Van Doorslaer, K., Roelke, M., Bush, M., Montali, R. J., Joslin, J., Burk, R. D., Jenson, A. B., Sundberg, J. P., Shapiro, B. & Van Ranst, M. (2007). Ancient papillomavirus-host co-speciation in Felidae. Genome Biol 8, R57. [PubMed]

Roman, A. & Munger, K. (2013). The papillomavirus E7 proteins. Virology 445, 138-168. [PubMed]

Schellenbacher, C., Roden, R. B. S. & Kirnbauer, R. (2017). Developments in L2-based human papillomavirus (HPV) vaccines. Virus Res 231, 166-175. [PubMed]

Schwartz, S. (2013). Papillomavirus transcripts and posttranscriptional regulation. Virology 445, 187-196. [PubMed]

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. [PubMed]

Van Doorslaer, K. (2013). Evolution of the Papillomaviridae . Virology 445, 11-20. [PubMed]

Van Doorslaer, K., Li, Z., Xirasagar, S., Maes, P., Kaminsky, D., Liou, D., Sun, Q., Kaur, R., Huyen, Y. & McBride, A. A. (2017a). The Papillomavirus Episteme: a major update to the papillomavirus sequence database. Nucleic Acids Res 45, D499-D506. [PubMed]

Van Doorslaer, K. & McBride, A. A. (2016). Molecular archeological evidence in support of the repeated loss of a papillomavirus gene. Sci Rep 6, 33028. [PubMed]

Van Doorslaer, K., Ruoppolo, V., Schmidt, A., Lescroel, A., Jongsomjit, D., Elrod, M., Kraberger, S., Stainton, D., Dugger, K. M., Ballard, G., Ainley, D. G. & Varsani, A. (2017b). Unique genome organization of non-mammalian papillomaviruses provides insights into the evolution of viral early proteins. Virus Evol 3, vex027. [PubMed]

Van Doorslaer, K., Tan, Q., Xirasagar, S., Bandaru, S., Gopalan, V., Mohamoud, Y., Huyen, Y. & McBride, A. A. (2013). The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis. Nucleic Acids Res 41, D571-D578. [PubMed]

Vande Pol, S. B. & Klingelhutz, A. J. (2013). Papillomavirus E6 oncoproteins. Virology 445, 115-137. [PubMed]

Wang, J. W. & Roden, R. B. (2013). L2, the minor capsid protein of papillomavirus. Virology 445, 175-186. [PubMed]

White, E. A., Kramer, R. E., Tan, M. J., Hayes, S. D., Harper, J. W. & Howley, P. M. (2012). Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol 86, 13174-13186. [PubMed]