References: Filoviridae


Ahmad, A., B. Tigabu, A. Ivanov, M. Jerebtsova, T. Ammosova, P. Ramanathan, N. Kumari, C. A. Brantner, C. A. Pietzsch, G. Abdullah, A. Popratiloff, S. Widen, A. Bukreyev and S. Nekhai (2023). Ebola virus NP binding to host protein phosphatase-1 regulates capsid formation. Res Sq,"10.21203/" 10.21203/ [PubMed]

Albariño, C. G., L. S. Uebelhoer, J. P. Vincent, M. L. Khristova, A. K. Chakrabarti, A. McElroy, S. T. Nichol and J. S. Towner (2013). Development of a reverse genetics system to generate recombinant Marburg virus derived from a bat isolate. Virology 446: 230-7. [PubMed]

Aleksandrowicz, P., A. Marzi, N. Biedenkopf, N. Beimforde, S. Becker, T. Hoenen, H. Feldmann and H.-J. Schnittler (2011). Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J Infect Dis 204 Suppl 3: S957-67. [PubMed]

Amman, B. R., S. A. Carroll, Z. D. Reed, T. K. Sealy, S. Balinandi, R. Swanepoel, A. Kemp, B. R. Erickson, J. A. Comer, S. Campbell, D. L. Cannon, M. L. Khristova, P. Atimnedi, C. D. Paddock, R. J. Crockett, T. D. Flietstra, K. L. Warfield, R. Unfer, E. Katongole-Mbidde, R. Downing, J. W. Tappero, S. R. Zaki, P. E. Rollin, T. G. Ksiazek, S. T. Nichol and J. S. Towner (2012). Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog 8: e1002877. [PubMed]

Amman, B. R., L. Nyakarahuka, A. K. McElroy, K. A. Dodd, T. K. Sealy, A. J. Schuh, T. R. Shoemaker, S. Balinandi, P. Atimnedi, W. Kaboyo, S. T. Nichol and J. S. Towner (2014). Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg Infect Dis 20: 1761-4. [PubMed]

Amman, B. R., R. Swanepoel, S. T. Nichol and J. S. Towner (2017). Ecology of filoviruses. Curr Top Microbiol Immunol 411: 23-61. [PubMed]

Bach, S., J. C. Demper, N. Biedenkopf, S. Becker and R. K. Hartmann (2021a). RNA secondary structure at the transcription start site influences EBOV transcription initiation and replication in a length- and stability-dependent manner. RNA Biol 18: 523-36. [PubMed]

Bach, S., J. C. Demper, A. Grünweller, S. Becker, N. Biedenkopf and R. K. Hartmann (2021b). Regulation of VP30-dependent transcription by RNA sequence and structure in the genomic Ebola virus promoter. J Virol 95. [PubMed]

Bach, S., J. C. Demper, P. Klemm, J. Schlereth, M. Lechner, A. Schoen, L. Kämper, F. Weber, S. Becker, N. Biedenkopf and R. K. Hartmann (2021c). Identification and characterization of short leader and trailer RNAs synthesized by the Ebola virus RNA polymerase. PLoS Pathog 17: e1010002. [PubMed]

Bamberg, S., L. Kolesnikova, P. Möller, H.-D. Klenk and S. Becker (2005). VP24 of Marburg virus influences formation of infectious particles. J Virol 79: 13421-33. [PubMed]

Banadyga, L., T. Hoenen, X. Ambroggio, E. Dunham, A. Groseth and H. Ebihara (2017). Ebola virus VP24 interacts with NP to facilitate nucleocapsid assembly and genome packaging. Sci Rep 7: 7698. [PubMed]

Bào, Y., G. K. Amarasinghe, C. F. Basler, S. Bavari, A. Bukreyev, K. Chandran, O. Dolnik, J. M. Dye, H. Ebihara, P. Formenty, R. Hewson, G. Kobinger, E. Leroy, E. Mühlberger, S. V. Netesov, J. L. Patterson, J. T. Paweska, S. J. Smither, A. Takada, J. S. Towner, V. E. Volchkov, V. Wahl-Jensen and J. H. Kuhn (2017). Implementation of objective PASC-derived taxon demarcation criteria for official classification of filoviruses. Viruses 9: 106. [PubMed]

Barrientos, L. G., A. M. Martin, P. E. Rollin and A. Sanchez (2004). Disulfide bond assignment of the Ebola virus secreted glycoprotein SGP. Biochem Biophys Res Commun 323: 696-702. [PubMed]

Basler, C. F., A. Mikulasova, L. Martinez-Sobrido, J. Paragas, E. Mühlberger, M. Bray, H.-D. Klenk, P. Palese and A. García-Sastre (2003). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J Virol 77: 7945-56. [PubMed]

Basler, C. F., X. Wang, E. Mühlberger, V. Volchkov, J. Paragas, H.-D. Klenk, A. García-Sastre and P. Palese (2000). The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci USA 97: 12289-94. [PubMed]

Bavari, S., C. M. Bosio, E. Wiegand, G. Ruthel, A. B. Will, T. W. Geisbert, M. Hevey, C. Schmaljohn, A. Schmaljohn and M. J. Aman (2002). Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 195: 593-602. [PubMed]

Baz-Martínez, M., A. El Motiam, P. Ruibal, G. N. Condezo, C. F. de la Cruz-Herrera, V. Lang, M. Collado, C. San Martín, M. S. Rodríguez, C. Muñoz-Fontela and C. Rivas (2016). Regulation of Ebola virus VP40 matrix protein by SUMO. Sci Rep 6: 37258. [PubMed]

Becker, S., S. Huppertz, H.-D. Klenk and H. Feldmann (1994). The nucleoprotein of Marburg virus is phosphorylated. J Gen Virol 75: 809-18. [PubMed]

Becker, S., C. Rinne, U. Hofsäß, H.-D. Klenk and E. Mühlberger (1998). Interactions of Marburg virus nucleocapsid proteins. Virology 249: 406-17. [PubMed]

Beniac, D. R. and T. F. Booth (2017). Structure of the Ebola virus glycoprotein spike within the virion envelope at 11Å resolution. Sci Rep 7: 46374. [PubMed]

Beniac, D. R., P. L. Melito, S. L. Devarennes, S. L. Hiebert, M. J. Rabb, L. L. Lamboo, S. M. Jones and T. F. Booth (2012). The organisation of Ebola virus reveals a capacity for extensive, modular polyploidy. PLoS One 7: e29608. [PubMed]

Bhattacharyya, S., T. J. Hope and J. A. T. Young (2011). Differential requirements for clathrin endocytic pathway components in cellular entry by Ebola and Marburg glycoprotein pseudovirions. Virology 419: 1-9. [PubMed]

Biedenkopf, N., B. Hartlieb, T. Hoenen and S. Becker (2013). Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: impact on viral transcription and replication. J Biol Chem 288: 11165-74. [PubMed]

Biedenkopf, N., C. Lier and S. Becker (2016a). Dynamic phosphorylation of VP30 Is essential for Ebola virus life cycle. J Virol 90: 4914-25. [PubMed]

Biedenkopf, N., J. Schlereth, A. Grünweller, S. Becker and R. K. Hartmann (2016b). RNA binding of Ebola virus VP30 is essential for activating viral transcription. J Virol 90: 7481-96. [PubMed]

Bodmer, B. S., A. Breithaupt, M. Heung, J. E. Brunetti, C. Henkel, J. Müller-Guhl, E. Rodríguez, L. Wendt, S. L. Winter, M. Vallbracht, A. Müller, S. Römer, P. Chlanda, C. Muñoz-Fontela, T. Hoenen and B. Escudero-Pérez (2023). In vivo characterization of the novel ebolavirus Bombali virus suggests a low pathogenic potential for humans. Emerg Microbes Infect 12: 2164216. [PubMed]

Boehmann, Y., S. Enterlein, A. Randolf and E. Mühlberger (2005). A reconstituted replication and transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. Virology 332: 406-17. [PubMed]

Bornholdt, Z. A., T. Noda, D. M. Abelson, P. Halfmann, M. R. Wood, Y. Kawaoka and E. O. Saphire (2013). Structural rearrangement of Ebola virus VP40 begets multiple functions in the virus life cycle. Cell 154: 763-74. [PubMed]

Bowen, E. T., G. Lloyd, W. J. Harris, G. S. Platt, A. Baskerville and E. E. Vella (1977). Viral haemorrhagic fever in southern Sudan and northern Zaire. Preliminary studies on the aetiological agent. Lancet 1: 571-3. [PubMed]

Bramble, M. S., N. Hoff, P. Gilchuk, P. Mukadi, K. Lu, R. H. Doshi, I. Steffen, B. P. Nicholson, A. Lipson, N. Vashist, C. Sinai, D. Spencer, G. Olinger, E. O. Wemakoy, B. K. Illunga, J. Pettitt, J. Logue, J. Marchand, J. Varughese, R. S. Bennett, P. Jahrling, G. Cavet, T. Serafini, E. Ollmann Saphire, E. Vilain, J. J. Muyembe-Tamfum, L. E. Hensely, G. Simmons, J. E. Crowe, Jr. and A. W. Rimoin (2018). Pan-filovirus serum neutralizing antibodies in a subset of Congolese ebolavirus infection survivors. J Infect Dis 218: 1929-36. [PubMed]

Brauburger, K., L. R. Deflubé and E. Mühlberger (2015). Filovirus transcription and replication. In Biology and pathogenesis of rhabdo- and filoviruses, pp. 515-55. Edited by A. K. Pattnaik & M. A. Whitt. Singapore: World Scientific Publishing.

Bray, M., J. Driscoll and J. W. Huggins (2000). Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-L-homocysteine hydrolase inhibitor. Antiviral Res 45: 135-47. [PubMed]

Brinkmann, C., I. Nehlmeier, K. Walendy-Gnirß, J. Nehls, M. González Hernández, M. Hoffmann, X. Qiu, A. Takada, M. Schindler and S. Pöhlmann (2016). The tetherin antagonism of the Ebola virus glycoprotein requires an intact receptor-binding domain and can be blocked by GP1-specific antibodies. J Virol 90: 11075-86. [PubMed]

Bukreyev, A. A., V. E. Volchkov, V. M. Blinov, S. A. Dryga and S. V. Netesov (1995). The complete nucleotide sequence of the Popp (1967) strain of Marburg virus: a comparison with the Musoke (1980) strain. Arch Virol 140: 1589-600. [PubMed]

Cárdenas, W. B., Y.-M. Loo, M. Gale, Jr., A. L. Hartman, C. R. Kimberlin, L. Martínez-Sobrido, E. Ollmann Saphire and C. F. Basler (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80: 5168-78. [PubMed]

Carette, J. E., M. Raaben, A. C. Wong, A. S. Herbert, G. Obernosterer, N. Mulherkar, A. I. Kuehne, P. J. Kranzusch, A. M. Griffin, G. Ruthel, P. Dal Cin, J. M. Dye, S. P. Whelan, K. Chandran and T. R. Brummelkamp (2011). Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature 477: 340-3. [PubMed]

Chandran, K., N. J. Sullivan, U. Felbor, S. P. Whelan and J. M. Cunningham (2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308: 1643-5. [PubMed]

Clifton, M. C., J. F. Bruhn, K. Atkins, T. L. Webb, R. O. Baydo, A. Raymond, D. D. Lorimer, T. E. Edwards, P. J. Myler and E. O. Saphire (2015). High-resolution crystal structure of dimeric VP40 from Sudan ebolavirus. J Infect Dis 212 Suppl 2: S167-71. [PubMed]

Collar, A. L., E. C. Clarke, E. Anaya, D. Merrill, S. Yarborough, S. M. Anthony, J. H. Kuhn, C. Merle, M. Theisen and S. B. Bradfute (2017). Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins. Virology 502: 39-47. [PubMed]

Côté, M., J. Misasi, T. Ren, A. Bruchez, K. Lee, C. M. Filone, L. Hensley, Q. Li, D. Ory, K. Chandran and J. Cunningham (2011). Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477: 344-8. [PubMed]

Cross, R. W., C. E. Mire, K. N. Agans, V. Borisevich, K. A. Fenton and T. W. Geisbert (2018). Marburg and Ravn viruses fail to cause disease in the domestic ferret (Mustela putorius furo). J Infect Dis 218: S448-S52. [PubMed]

Davey, R. A., O. Shtanko, M. Anantpadma, Y. Sakurai, K. Chandran and W. Maury (2017). Mechanisms of filovirus entry. Curr Top Microbiol Immunol 411: 323-52. [PubMed]

de La Vega, M.-A., G. Wong, G. P. Kobinger and X. Qiu (2015). The multiple roles of sGP in Ebola pathogenesis. Viral Immunol 28: 3-9. [PubMed]

Deflubé, L. R., T. N. Cressey, A. J. Hume, J. Olejnik, E. Haddock, F. Feldmann, H. Ebihara, R. Fearns and E. Mühlberger (2019). Ebolavirus polymerase uses an unconventional genome replication mechanism. Proc Natl Acad Sci U S A 116: 8535-43. [PubMed]

Dessen, A., V. Volchkov, O. Dolnik, H.-D. Klenk and W. Weissenhorn (2000). Crystal structure of the matrix protein VP40 from Ebola virus. EMBO J 19: 4228-36. [PubMed]

Dias, J. M., A. I. Kuehne, D. M. Abelson, S. Bale, A. C. Wong, P. Halfmann, M. A. Muhammad, M. L. Fusco, S. E. Zak, E. Kang, Y. Kawaoka, K. Chandran, J. M. Dye and E. O. Saphire (2011). A shared structural solution for neutralizing ebolaviruses. Nat Struct Mol Biol 18: 1424-7. [PubMed]

Dolnik, O., L. Stevermann, L. Kolesnikova and S. Becker (2015). Marburg virus inclusions: A virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur J Cell Biol 94: 323-31. [PubMed]

Dolnik, O., V. Volchkova, W. Garten, C. Carbonnelle, S. Becker, J. Kahnt, U. Ströher, H.-D. Klenk and V. Volchkov (2004). Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23: 2175-84. [PubMed]

Dong, S., K. Wen, H. Chu, H. Li, Q. Yu, C. Wang and X. Qin (2020). Crystal structure of the Měnglà virus VP30 C-terminal domain. Biochem Biophys Res Commun 525: 392-7. [PubMed]

Ebihara, H., A. Takada, D. Kobasa, S. Jones, G. Neumann, S. Theriault, M. Bray, H. Feldmann and Y. Kawaoka (2006). Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2: e73. [PubMed]

Edwards, M. R. and C. F. Basler (2015). Marburg virus VP24 protein relieves suppression of the NF-κB pathway through interaction with Kelch-like ECH-associated protein 1. J Infect Dis 212 Suppl 2: S154-9. [PubMed]

Edwards, M. R., B. Johnson, C. E. Mire, W. Xu, R. S. Shabman, L. N. Speller, D. W. Leung, T. W. Geisbert, G. K. Amarasinghe and C. F. Basler (2014). The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway. Cell Rep 6: 1017-25. [PubMed]

Edwards, M. R., O. A. Vogel, H. Mori, R. A. Davey and C. F. Basler (2022). Marburg virus VP30 is required for transcription initiation at the glycoprotein gene. MBio 13: e0224322. [PubMed]

Elliott, L. H., M. P. Kiley and J. B. McCormick (1985). Descriptive analysis of Ebola virus proteins. Virology 147: 169-76. [PubMed]

Ellis, D. S., S. Stamford, G. Lloyd, E. T. W. Bowen, G. S. Platt, H. Way and D. I. H. Simpson (1979a). Ebola and Marburg viruses: I. Some ultrastructural differences between strains when grown in Vero cells. J Med Virol 4: 201-11. [PubMed]

Ellis, D. S., S. Stamford, D. G. Tvoey, G. Lloyd, E. T. W. Bowen, G. S. Platt, H. Way and D. I. H. Simpson (1979b). Ebola and Marburg viruses: II. Thier development within Vero cells and the extra-cellular formation of branched and torus forms. J Med Virol 4: 213-25. [PubMed]

Enterlein, S., V. Volchkov, M. Weik, L. Kolesnikova, V. Volchkova, H.-D. Klenk and E. Mühlberger (2006). Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol 80: 1038-43. [PubMed]

Escudero-Pérez, B., V. A. Volchkova, O. Dolnik, P. Lawrence and V. E. Volchkov (2014). Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog 10: e1004509. [PubMed]

Falzarano, D., O. Krokhin, G. Van Domselaar, K. Wolf, J. Seebach, H.-J. Schnittler and H. Feldmann (2007). Ebola sGP—the first viral glycoprotein shown to be C-mannosylated. Virology 368: 83-90. [PubMed]

Falzarano, D., O. Krokhin, V. Wahl-Jensen, J. Seebach, K. Wolf, H.-J. Schnittler and H. Feldmann (2006). Structure-function analysis of the soluble glycoprotein, sGP, of Ebola virus. Chembiochem 7: 1605-11. [PubMed]

Feagins, A. R. and C. F. Basler (2015). Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells. Virology 485: 145-52. [PubMed]

Feizpour, A., X. Yu, H. Akiyama, C. M. Miller, E. Edmans, S. Gummuluru and B. M. Reinhard (2015). Quantifying lipid contents in enveloped virus particles with plasmonic nanoparticles. Small 11: 1592-602. [PubMed]

Feldmann, H., E. Mühlberger, A. Randolf, C. Will, M. P. Kiley, A. Sanchez and H.-D. Klenk (1992). Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res 24: 1-19. [PubMed]

Feldmann, H., C. Will, M. Schikore, W. Slenczka and H.-D. Klenk (1991). Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182: 353-6. [PubMed]

Ferron, F., S. Longhi, B. Henrissat and B. Canard (2002). Viral RNA-polymerases - a predicted 2'-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci 27: 222-4. [PubMed]

Flyak, A. I., P. A. Ilinykh, C. D. Murin, T. Garron, X. Shen, M. L. Fusco, T. Hashiguchi, Z. A. Bornholdt, J. C. Slaughter, G. Sapparapu, C. Klages, T. G. Ksiazek, A. B. Ward, E. O. Saphire, A. Bukreyev and J. E. Crowe, Jr. (2015). Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160: 893-903. [PubMed]

Flyak, A. I., N. Kuzmina, C. D. Murin, C. Bryan, E. Davidson, P. Gilchuk, C. P. Gulka, P. A. Ilinykh, X. Shen, K. Huang, P. Ramanathan, H. Turner, M. L. Fusco, R. Lampley, N. Kose, H. King, G. Sapparapu, B. J. Doranz, T. G. Ksiazek, D. W. Wright, E. O. Saphire, A. B. Ward, A. Bukreyev and J. E. Crowe, Jr. (2018). Broadly neutralizing antibodies from human survivors target a conserved site in the Ebola virus glycoprotein HR2-MPER region. Nat Microbiol 3: 670-7. [PubMed]

Froude, J. W., T. Pelat, S. Miethe, S. E. Zak, A. Z. Wec, K. Chandran, J. M. Brannan, R. R. Bakken, M. Hust, P. Thullier and J. M. Dye (2017). Generation and characterization of protective antibodies to Marburg virus. MAbs 9: 696-703. [PubMed]

Fujita-Fujiharu, Y., Y. Sugita, Y. Takamatsu, K. Houri, M. Igarashi, Y. Muramoto, M. Nakano, Y. Tsunoda, I. Taniguchi, S. Becker and T. Noda (2022). Structural insight into Marburg virus nucleoprotein-RNA complex formation. Nat Commun 13: 1191. [PubMed]

Funke, C., S. Becker, H. Dartsch, H.-D. Klenk and E. Mühlberger (1995). Acylation of the Marburg virus glycoprotein. Virology 208: 289-97. [PubMed]

Geisbert, T. W. and P. B. Jahrling (1995). Differentiation of filoviruses by electron microscopy. Virus Res 39: 129-50. [PubMed]

Geoghegan, J. L., F. Di Giallonardo, M. Wille, A. S. Ortiz-Baez, V. A. Costa, T. Ghaly, J. C. O. Mifsud, O. M. H. Turnbull, D. R. Bellwood, J. E. Williamson and E. C. Holmes (2021). Virome composition in marine fish revealed by meta-transcriptomics. Virus Evol 7: veab005. [PubMed]

Geyer, H., C. Will, H. Feldmann, H.-D. Klenk and R. Geyer (1992). Carbohydrate structure of Marburg virus glycoprotein. Glycobiology 2: 299-312. [PubMed]

Goldstein, T., S. J. Anthony, A. Gbakima, B. H. Bird, J. Bangura, A. Tremeau-Bravard, M. N. Belaganahalli, H. L. Wells, J. K. Dhanota, E. Liang, M. Grodus, R. K. Jangra, V. A. DeJesus, G. Lasso, B. R. Smith, A. Jambai, B. O. Kamara, S. Kamara, W. Bangura, C. Monagin, S. Shapira, C. K. Johnson, K. Saylors, E. M. Rubin, K. Chandran, W. I. Lipkin and J. A. K. Mazet (2018a). Author Correction: The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 3: 1486. [PubMed]

Goldstein, T., S. J. Anthony, A. Gbakima, B. H. Bird, J. Bangura, A. Tremeau-Bravard, M. N. Belaganahalli, H. L. Wells, J. K. Dhanota, E. Liang, M. Grodus, R. K. Jangra, V. A. DeJesus, G. Lasso, B. R. Smith, A. Jambai, B. O. Kamara, S. Kamara, W. Bangura, C. Monagin, S. Shapira, C. K. Johnson, K. Saylors, E. M. Rubin, K. Chandran, W. I. Lipkin and J. A. K. Mazet (2018b). The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 3: 1084-9. [PubMed]

Grikscheit, K., O. Dolnik, Y. Takamatsu, A. R. Pereira and S. Becker (2020). Ebola virus nucleocapsid-like structures utilize Arp2/3 signaling for intracellular long-distance transport. Cells 9: 1728. [PubMed]

Groseth, A., J. E. Charton, M. Sauerborn, F. Feldmann, S. M. Jones, T. Hoenen and H. Feldmann (2009). The Ebola virus ribonucleoprotein complex: a novel VP30-L interaction identified. Virus Res 140: 8-14. [PubMed]

Haasnoot, J., W. de Vries, E.-J. Geutjes, M. Prins, P. de Haan and B. Berkhout (2007). The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3: e86. [PubMed]

Halfmann, P., G. Neumann and Y. Kawaoka (2011). The Ebolavirus VP24 protein blocks phosphorylation of p38 mitogen-activated protein kinase. J Infect Dis 204 Suppl 3: S953-6. [PubMed]

Han, Z., H. Boshra, J. O. Sunyer, S. H. Zwiers, J. Paragas and R. N. Harty (2003). Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J Virol 77: 1793-800. [PubMed]

Harty, R. N., M. E. Brown, G. Wang, J. Huibregtse and F. P. Hayes (2000). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc Natl Acad Sci USA 97: 13871-6. [PubMed]

Hashiguchi, T., M. L. Fusco, Z. A. Bornholdt, J. E. Lee, A. I. Flyak, R. Matsuoka, D. Kohda, Y. Yanagi, M. Hammel, J. E. Crowe, Jr. and E. O. Saphire (2015). Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160: 904-12. [PubMed]

He, B., Y. Feng, H. Zhang, L. Xu, W. Yang, Y. Zhang, X. Li and C. Tu (2015). Filovirus RNA in fruit bats, China. Emerg Infect Dis 21: 1675-7. [PubMed]

He, B., T. Hu, X. Yan, F. Zhang and C. Tu (2023). Detection and characterization of a novel bat filovirus (Dehong virus, DEHV) in fruit bats. bioRxiv,"10.1101/2023.08.07.552227" 10.1101/2023.08.07.5522272023.08.07.552227.

He, F. B., H. Khan, M. Huttunen, P. Kolehmainen, K. Melén, S. Maljanen, M. Qu, M. Jiang, L. Kakkola and I. Julkunen (2021). Filovirus VP24 proteins differentially regulate RIG-I and MDA5-dependent type I and III interferon promoter activation. Front Immunol 12: 694105. [PubMed]

He, J., L. I. Melnik, A. Komin, G. Wiedman, T. Fuselier, C. F. Morris, C. G. Starr, P. C. Searson, W. R. Gallaher, K. Hristova, R. F. Garry and W. C. Wimley (2017). Ebola virus delta peptide is a viroporin. J Virol 91: e00438-17. [PubMed]

Henry, R. (2015). Ebola [ebʹo-lə" target="ictvref">PubMed]. Emerg Infect Dis 21: 1905. [PubMed]

Hierweger, M. M., M. C. Koch, M. Rupp, P. Maes, N. Di Paola, R. Bruggmann, J. H. Kuhn, H. Schmidt-Posthaus and T. Seuberlich (2021). Novel filoviruses, hantavirus, and rhabdovirus in freshwater fish, Switzerland, 2017. Emerg Infect Dis 27: 3082-91. [PubMed]

Hoenen, T., N. Biedenkopf, F. Zielecki, S. Jung, A. Groseth, H. Feldmann and S. Becker (2010). Oligomerization of Ebola virus VP40 is essential for particle morphogenesis and regulation of viral transcription. J Virol 84: 7053-63. [PubMed]

Hoenen, T., A. Groseth, L. Kolesnikova, S. Theriault, H. Ebihara, B. Hartlieb, S. Bamberg, H. Feldmann, U. Ströher and S. Becker (2006). Infection of naive target cells with virus-like particles: implications for the function of Ebola virus VP24. J Virol 80: 7260-4. [PubMed]

Hoenen, T., R. S. Shabman, A. Groseth, A. Herwig, M. Weber, G. Schudt, O. Dolnik, C. F. Basler, S. Becker and H. Feldmann (2012). Inclusion bodies are a site of ebolavirus replication. J Virol 86: 11779-88. [PubMed]

Horie, M. (2021). Identification of a novel filovirus in a common lancehead (Bothrops atrox (Linnaeus, 1758)). J Vet Med Sci 83: 1485-8. [PubMed]

Hu, S., Y. Fujita-Fujiharu, Y. Sugita, L. Wendt, Y. Muramoto, M. Nakano, T. Hoenen and T. Noda (2023). Cryoelectron microscopic structure of the nucleoprotein-RNA complex of the European filovirus, Lloviu virus. PNAS Nexus 2: pgad120. [PubMed]

Huang, Y., L. Xu, Y. Sun and G. J. Nabel (2002). The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10: 307-16. [PubMed]

Hume, A. J., B. Heiden, J. Olejnik, E. L. Suder, S. Ross, W. A. Scoon, E. Bullitt, M. Ericsson, M. R. White, J. Turcinovic, T. T. N. Thao, R. M. Hekman, J. E. Kaserman, J. Huang, K. D. Alysandratos, G. E. Toth, F. Jakab, D. N. Kotton, A. A. Wilson, A. Emili, V. Thiel, J. H. Connor, G. Kemenesi, D. Cifuentes and E. Mühlberger (2022). Recombinant Lloviu virus as a tool to study viral replication and host responses. PLoS Pathog 18: e1010268. [PubMed]

Hume, A. J. and E. Mühlberger (2019). Distinct genome replication and transcription strategies within the growing filovirus family. J Mol Biol 431: 4290-320. [PubMed]

Ikegami, T., A. B. Calaor, M. E. Miranda, M. Niikura, M. Saijo, I. Kurane, Y. Yoshikawa and S. Morikawa (2001). Genome structure of Ebola virus subtype Reston: differences among Ebola subtypes. Brief report. Arch Virol 146: 2021-7. [PubMed]

Ito, H., S. Watanabe, A. Takada and Y. Kawaoka (2001). Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75: 1576-80. [PubMed]

Ivanov, A., P. Ramanathan, C. Parry, P. A. Ilinykh, X. Lin, M. Petukhov, Y. Obukhov, T. Ammosova, G. K. Amarasinghe, A. Bukreyev and S. Nekhai (2020). Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cell Mol Life Sci 77: 2579-603. [PubMed]

Jahrling, P. B., T. W. Geisbert, D. W. Dalgard, E. D. Johnson, T. G. Ksiazek, W. C. Hall and C. J. Peters (1990). Preliminary report: isolation of Ebola virus from monkeys imported to USA. Lancet 335: 502-5. [PubMed]

Jeffers, S. A., D. A. Sanders and A. Sanchez (2002). Covalent modifications of the Ebola virus glycoprotein. J Virol 76: 12463-72. [PubMed]

John, S. P., T. Wang, S. Steffen, S. Longhi, C. S. Schmaljohn and C. B. Jonsson (2007). Ebola virus VP30 is an RNA binding protein. J Virol 81: 8967-76. [PubMed]

Johnson, B., J. Li, J. Adhikari, M. R. Edwards, H. Zhang, T. Schwarz, D. W. Leung, C. F. Basler, M. L. Gross and G. K. Amarasinghe (2016). Dimerization controls Marburg virus VP24-dependent modulation of host antioxidative stress responses. J Mol Biol 428: 3483-94. [PubMed]

Johnson, K. M., J. V. Lange, P. A. Webb and F. A. Murphy (1977). Isolation and partial characterisation of a new virus causing acute haemorrhagic fever in Zaire. Lancet 1: 569-71. [PubMed]

Jouvenet, N., S. J. D. Neil, M. Zhadina, T. Zang, Z. Kratovac, Y. Lee, M. McNatt, T. Hatziioannou and P. D. Bieniasz (2009). Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol 83: 1837-44. [PubMed]

Kaletsky, R. L., J. R. Francica, C. Agrawal-Gamse and P. Bates (2009). Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci USA 106: 2886-91. [PubMed]

Kämper, L., L. Zierke, M. L. Schmidt, A. Müller, L. Wendt, J. Brandt, E. Hartmann, S. Braun, J. Holzerland, A. Groseth and T. Hoenen (2019). Assessment of the function and intergenus-compatibility of Ebola and Lloviu virus proteins. J Gen Virol 100: 760-72. [PubMed]

Kemenesi, G., K. Kurucz, B. Dallos, B. Zana, F. Földes, S. Boldogh, T. Görföl, M. W. Carroll and F. Jakab (2018). Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg Microbes Infect 7: 66. [PubMed]

Kemenesi, G., G. E. Tóth, M. Mayora-Neto, S. Scott, N. Temperton, E. Wright, E. Mühlberger, A. J. Hume, E. L. Suder, B. Zana, S. A. Boldogh, T. Görföl, P. Estók, T. Szentiványi, Z. Lanszki, B. A. Somogyi, Á. Nagy, C. I. Pereszlényi, G. Dudás, F. Földes, K. Kurucz, M. Madai, S. Zeghbib, P. Maes, B. Vanmechelen and F. Jakab (2022). Isolation of infectious Lloviu virus from Schreiber's bats in Hungary. Nat Commun 13: 1706. [PubMed]

Khan, H., L. Tripathi, P. Kolehmainen, R. Lundberg, E. Altan, J. Heroum, I. Julkunen, L. Kakkola and M. Huttunen (2023). VP24 matrix proteins of eight filoviruses downregulate innate immune response by inhibiting the interferon-induced pathway. J Gen Virol 104: e001888. [PubMed]

Kiley, M. P., E. T. Bowen, G. A. Eddy, M. Isaäcson, K. M. Johnson, J. B. McCormick, F. A. Murphy, S. R. Pattyn, D. Peters, O. W. Prozesky, R. L. Regnery, D. I. Simpson, W. Slenczka, P. Sureau, G. van der Groen, P. A. Webb and H. Wulff (1982). Filoviridae: a taxonomic home for Marburg and Ebola viruses? Intervirology 18: 24-32. [PubMed]

Kiley, M. P., N. J. Cox, L. H. Elliott, A. Sanchez, R. DeFries, M. J. Buchmeier, D. D. Richman and J. B. McCormick (1988). Physicochemical properties of Marburg virus: evidence for three distinct virus strains and their relationship to Ebola virus. J Gen Virol 69: 1957-67. [PubMed]

Kiley, M. P., R. L. Regnery and K. M. Johnson (1980). Ebola virus: identification of virion structural proteins. J Gen Virol 49: 333-41. [PubMed]

Kimberlin, C. R., Z. A. Bornholdt, S. Li, V. L. Woods, Jr., I. J. MacRae and E. O. Saphire (2010). Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression. Proc Natl Acad Sci USA 107: 314-9. [PubMed]

King, L. B., M. L. Fusco, A. I. Flyak, P. A. Ilinykh, K. Huang, B. Gunn, R. N. Kirchdoerfer, K. M. Hastie, A. K. Sangha, J. Meiler, G. Alter, A. Bukreyev, J. E. Crowe, Jr. and E. O. Saphire (2018). The marburgvirus-neutralizing human monoclonal antibody MR191 targets a conserved site to block virus receptor binding. Cell Host Microbe 23: 101-9 e4. [PubMed]

Kirchdoerfer, R. N., D. M. Abelson, S. Li, M. R. Wood and E. O. Saphire (2015). Assembly of the Ebola virus nucleoprotein from a chaperoned VP35 complex. Cell Rep 12: 140-9. [PubMed]

Kirchdoerfer, R. N., E. O. Saphire and A. B. Ward (2019). Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex. Acta Crystallogr F Struct Biol Commun 75: 340-7. [PubMed]

Kirchdoerfer, R. N., H. Wasserman, G. K. Amarasinghe and E. O. Saphire (2017). Filovirus structural biology: The molecules in the machine. Curr Top Microbiol Immunol 411: 381-417. [PubMed]

Koehler, A., L. Kolesnikova and S. Becker (2016a). An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus. J Gen Virol 97: 2494-500. [PubMed]

Koehler, A., L. Kolesnikova, U. Welzel, G. Schudt, A. Herwig and S. Becker (2016b). A single amino acid change in the Marburg virus matrix protein VP40 provides a replicative advantage in a species-specific manner. J Virol 90: 1444-54. [PubMed]

Koehler, A., S. Pfeiffer, L. Kolesnikova and S. Becker (2018). Analysis of the multifunctionality of Marburg virus VP40. J Gen Virol 99: 1614-20. [PubMed]

Kolesnikova, L., S. Bamberg, B. Berghöfer and S. Becker (2004a). The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 78: 2382-93. [PubMed]

Kolesnikova, L., B. Berghöfer, S. Bamberg and S. Becker (2004b). Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78: 12277-87. [PubMed]

Kolesnikova, L., H. Bugany, H.-D. Klenk and S. Becker (2002). VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 76: 1825-38. [PubMed]

Kolesnikova, L., E. Mittler, G. Schudt, H. Shams-Eldin and S. Becker (2012). Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Cell Microbiol 14: 182-97. [PubMed]

Kolesnikova, L., E. Mühlberger, E. Ryabchikova and S. Becker (2000). Ultrastructural organization of recombinant Marburg virus nucleoprotein: comparison with Marburg virus inclusions. J Virol 74: 3899-904. [PubMed]

Kolesnikova, L., A. Nanbo, S. Becker and Y. Kawaoka (2017). Inside the cell: assembly of filoviruses. Curr Top Microbiol Immunol 411: 353-80. [PubMed]

Kolesnikova, L., E. Ryabchikova, A. Shestopalov and S. Becker (2007). Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. J Infect Dis 196 Suppl 2: S232-6. [PubMed]

Koundouno, F. R., L. E. Kafetzopoulou, M. Faye, A. Renevey, B. Soropogui, K. Ifono, E. V. Nelson, A. A. Kamano, C. Tolno, G. Annibaldis, S. L. Millimono, J. Camara, K. Kourouma, A. Doré, T. E. Millimouno, F. M. B. Tolno, J. Hinzmann, H. Soubrier, M. Hinrichs, A. Thielebein, G. Herzer, M. Pahlmann, G. A. Ki-Zerbo, P. Formenty, A. Legand, M. R. Wiley, O. Faye, M. M. Diagne, A. A. Sall, P. Lemey, A. Bah, S. Günther, S. Keita, S. Duraffour and N. Magassouba (2022). Detection of Marburg virus disease in Guinea. The New England journal of medicine 386: 2528-30. [PubMed]

Kruse, T., N. Biedenkopf, E. P. T. Hertz, E. Dietzel, G. Stalmann, B. López-Méndez, N. E. Davey, J. Nilsson and S. Becker (2018). The Ebola virus nucleoprotein recruits the host PP2A-B56 phosphatase to activate transcriptional support activity of VP30. Mol Cell 69: 136-45.e6. [PubMed]

Kuhn, J. H. (2008). Filoviruses. A compendium of 40 years of epidemiological, clinical, and laboratory studies. Archives of Virology Supplementum, vol. 20. Vienna, Austria, SpringerWienNewYork.

Kuhn, J. H., G. K. Amarasinghe and D. L. Perry (2020). Filoviridae. In Fields Virology, 7th edn, pp. 449-503. Edited by P. M. Howley & D. M. Knipe. Whelan. Philadelphia, Pennsylvania, USA: Wolters Kluwer/Lippincott Williams & Wilkins.

Le Guenno, B., P. Formenty, M. Wyers, P. Gounon, F. Walker and C. Boesch (1995). Isolation and partial characterisation of a new strain of Ebola virus. Lancet 345: 1271-4. [PubMed]

Lee, J. E., M. L. Fusco, A. J. Hessell, W. B. Oswald, D. R. Burton and E. O. Saphire (2008). Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454: 177-82. [PubMed]

Lee, M. S., F. J. Lebeda and M. A. Olson (2009). Fold prediction of VP24 protein of Ebola and Marburg viruses using de novo fragment assembly. J Struct Biol 167: 136-44. [PubMed]

Leung, D. W., K. C. Prins, D. M. Borek, M. Farahbakhsh, J. M. Tufariello, P. Ramanan, J. C. Nix, L. A. Helgeson, Z. Otwinowski, R. B. Honzatko, C. F. Basler and G. K. Amarasinghe (2010). Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35. Nat Struct Mol Biol 17: 165-72. [PubMed]

Licata, J. M., M. Simpson-Holley, N. T. Wright, Z. Han, J. Paragas and R. N. Harty (2003). Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. J Virol 77: 1812-9. [PubMed]

Liu, B., S. Dong, G. Li, W. Wang, X. Liu, Y. Wang, C. Yang, Z. Rao and Y. Guo (2017). Structural insight into nucleoprotein conformation change chaperoned by VP35 peptide in Marburg virus. J Virol 91: e00825-17. [PubMed]

Lötfering, B., E. Mühlberger, T. Tamura, H.-D. Klenk and S. Becker (1999). The nucleoprotein of Marburg virus is target for multiple cellular kinases. Virology 255: 50-62. [PubMed]

Makenov, M. T., L. A. T. Le, O. A. Stukolova, E. V. Radyuk, E. S. Morozkin, N. T. T. Bui, O. B. Zhurenkova, M. N. Dao, C. V. Nguyen, M. T. Luong, D. T. Nguyen, M. V. Fedorova, A. V. Valdokhina, V. P. Bulanenko, V. G. Akimkin and L. S. Karan (2023). Detection of filoviruses in bats in Vietnam. Viruses 15: e1785. [PubMed]

Malashkevich, V. N., B. J. Schneider, M. L. McNally, M. A. Milhollen, J. X. Pang and P. S. Kim (1999). Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc Natl Acad Sci USA 96: 2662-7. [PubMed]

Manhart, W. A., J. R. Pacheco, A. J. Hume, T. N. Cressey, L. R. Deflubé and E. Mühlberger (2018). A chimeric Lloviu virus minigenome system reveals that the bat-derived filovirus replicates more similarly to ebolaviruses than marburgviruses. Cell Rep 24: 2573-80 e4. [PubMed]

Marsh, G. A., J. Haining, R. Robinson, A. Foord, M. Yamada, J. A. Barr, J. Payne, J. White, M. Yu, J. Bingham, P. E. Rollin, S. T. Nichol, L.-F. Wang and D. Middleton (2011). Ebola Reston virus infection of pigs: clinical significance and transmission potential. J Infect Dis 204 Suppl 3: S804-9. [PubMed]

Maruyama, J., H. Miyamoto, M. Kajihara, H. Ogawa, K. Maeda, Y. Sakoda, R. Yoshida and A. Takada (2014). Characterization of the envelope glycoprotein of a novel filovirus, Lloviu virus. J Virol 88: 99-109. [PubMed]

Marzi, A., E. Haddock, M. Kajihara, H. Feldmann and A. Takada (2018). Monoclonal antibody cocktail protects hamsters from lethal Marburg virus infection. J Infect Dis 218: S662-S5. [PubMed]

Mateo, M., C. Carbonnelle, O. Reynard, L. Kolesnikova, K. Nemirov, A. Page, V. A. Volchkova and V. E. Volchkov (2011). VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204 Suppl 3: S1011-20. [PubMed]

Mehedi, M., D. Falzarano, J. Seebach, X. Hu, M. S. Carpenter, H.-J. Schnittler and H. Feldmann (2011). A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J Virol 85: 5406-14. [PubMed]

Melnik, L. I., S. Guha, J. Ghimire, A. R. Smither, B. J. Beddingfield, A. R. Hoffmann, L. Sun, N. A. Ungerleider, M. C. Baddoo, E. K. Flemington, W. R. Gallaher, W. C. Wimley and R. F. Garry (2022). Ebola virus delta peptide is an enterotoxin. Cell Rep 38: 110172. [PubMed]

Mire, C. E., J. B. Geisbert, V. Borisevich, K. A. Fenton, K. N. Agans, A. I. Flyak, D. J. Deer, H. Steinkellner, O. Bohorov, N. Bohorova, C. Goodman, A. Hiatt, D. H. Kim, M. H. Pauly, J. Velasco, K. J. Whaley, J. E. Crowe, Jr., L. Zeitlin and T. W. Geisbert (2017). Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci Transl Med 9: eaai8711. [PubMed]

Misasi, J., K. Chandran, J.-Y. Yang, B. Considine, C. M. Filone, M. Côté, N. Sullivan, G. Fabozzi, L. Hensley and J. Cunningham (2012). Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences. J Virol 86: 3284-92. [PubMed]

Modrof, J., S. Becker and E. Mühlberger (2003). Ebola virus transcription activator VP30 is a zinc-binding protein. J Virol 77: 3334-8. [PubMed]

Modrof, J., C. Möritz, L. Kolesnikova, T. Konakova, B. Hartlieb, A. Randolf, E. Mühlberger and S. Becker (2001). Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions. Virology 287: 171-82. [PubMed]

Modrof, J., E. Mühlberger, H.-D. Klenk and S. Becker (2002). Phosphorylation of VP30 impairs Ebola virus transcription. J Biol Chem 277: 33099-104. [PubMed]

Mühlberger, E., B. Lötfering, H.-D. Klenk and S. Becker (1998). Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72: 8756-64. [PubMed]

Mühlberger, E., A. Sanchez, A. Randolf, C. Will, M. P. Kiley, H.-D. Klenk and H. Feldmann (1992). The nucleotide sequence of the L gene of Marburg virus, a filovirus: homologies with paramyxoviruses and rhabdoviruses. Virology 187: 534-47. [PubMed]

Mühlberger, E., M. Weik, V. E. Volchov, H.-D. Klenk and S. Becker (1999). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73: 2333-42. [PubMed]

Nanbo, A., M. Imai, S. Watanabe, T. Noda, K. Takahashi, G. Neumann, P. Halfmann and Y. Kawaoka (2010). Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 6: e1001121. [PubMed]

Negredo, A., G. Palacios, S. Vázquez-Morón, F. González, H. Dopazo, F. Molero, J. Juste, J. Quetglas, N. Savji, M. de la Cruz Martínez, J. E. Herrera, M. Pizarro, S. K. Hutchison, J. E. Echevarría, W. I. Lipkin and A. Tenorio (2011). Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog 7: e1002304. [PubMed]

Nelson, E. V., K. M. Schmidt, L. R. Deflubé, S. Doğanay, L. Banadyga, J. Olejnik, A. J. Hume, E. Ryabchikova, H. Ebihara, N. Kedersha, T. Ha and E. Mühlberger (2016). Ebola virus does not induce stress granule formation during infection and sequesters stress granule proteins within viral inclusions. J Virol 90: 7268-84. [PubMed]

Ng, M., E. Ndungo, R. K. Jangra, Y. Cai, E. Postnikova, S. R. Radoshitzky, J. M. Dye, E. Ramírez de Arellano, A. Negredo, G. Palacios, J. H. Kuhn and K. Chandran (2014). Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1. Virology 468-470: 637-46. [PubMed]

Noda, T., H. Sagara, E. Suzuki, A. Takada, H. Kida and Y. Kawaoka (2002). Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J Virol 76: 4855-65. [PubMed]

Page, A., V. A. Volchkova, S. P. Reid, M. Mateo, A. Bagnaud-Baule, K. Nemirov, A. C. Shurtleff, P. Lawrence, O. Reynard, M. Ottmann, V. Lotteau, S. S. Biswal, R. K. Thimmulappa, S. Bavari and V. E. Volchkov (2014). Marburgvirus hijacks Nrf2-dependent pathway by targeting Nrf2-negative regulator Keap1. Cell Rep 6: 1026-36. [PubMed]

Panchal, R. G., G. Ruthel, T. A. Kenny, G. H. Kallstrom, D. Lane, S. S. Badie, L. Li, S. Bavari and M. J. Aman (2003). In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci USA 100: 15936-41. [PubMed]

Paskey, A. C., J. H. Ng, G. K. Rice, W. N. Chia, C. W. Philipson, R. J. Foo, R. Z. Cer, K. A. Long, M. R. Lueder and K. Frey (2020). The temporal RNA virome patterns of a lesser dawn bat (Eonycteris spelaea) colony revealed by deep sequencing. Virus Evol 6: veaa017.

Pavadai, E., B. S. Gerstman and P. P. Chapagain (2018). A cylindrical assembly model and dynamics of the Ebola virus VP40 structural matrix. Sci Rep 8: 9776. [PubMed]

Pawęska, J. T., P. Jansen van Vuren, A. Kemp, N. Storm, A. A. Grobbelaar, M. R. Wiley, G. Palacios and W. Markotter (2018). Marburg virus infection in Egyptian rousette bats, South Africa, 2013-2014. Emerg Infect Dis 24: 1134-7. [PubMed]

Peng, Q., B. Yuan, J. Cheng, M. Wang, S. Gao, S. Bai, X. Zhao, J. Qi, G. F. Gao and Y. Shi (2023). Molecular mechanism of de novo replication by the Ebola virus polymerase. Nature 622: 603-10. [PubMed]

Peyrol, J., C. Thizon, J.-C. Gaillard, C. Marchetti, J. Armengaud and F. Rollin-Genetet (2013). Multiple phosphorylable sites in the Zaire Ebolavirus nucleoprotein evidenced by high resolution tandem mass spectrometry. J Virol Methods 187: 159-65. [PubMed]

Pokhrel, R., E. Pavadai, B. S. Gerstman and P. P. Chapagain (2019). Membrane pore formation and ion selectivity of the Ebola virus delta peptide. Phys Chem Chem Phys 21: 5578-85. [PubMed]

Radoshitzky, S. R., K. L. Warfield, X. Chi, L. Dong, K. Kota, S. B. Bradfute, J. D. Gearhart, C. Retterer, P. J. Kranzusch, J. N. Misasi, M. A. Hogenbirk, V. Wahl-Jensen, V. E. Volchkov, J. M. Cunningham, P. B. Jahrling, M. J. Aman, S. Bavari, M. Farzan and J. H. Kuhn (2011). Ebolavirus Δ-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry. J Virol 85: 8502-13. [PubMed]

Ramírez de Arellano, E., M. Sanchez-Lockhart, M. J. Perteguer, M. Bartlett, M. Ortiz, P. Campioli, A. Hernández, J. Gonzalez, K. Garcia, M. Ramos, M. Jiménez-Clavero, A. Tenorio, M. P. Sánchez-Seco, F. González, J. E. Echevarría, G. Palacios and A. Negredo (2019). First evidence of antibodies against Lloviu virus in Schreiber's bent-winged insectivorous bats demonstrate a wide circulation of the virus in Spain. Viruses 11: 360. [PubMed]

Regnery, R. L., K. M. Johnson and M. P. Kiley (1980). Virion nucleic acid of Ebola virus. J Virol 36: 465-9. [PubMed]

Reid, S. P., W. B. Cárdenas and C. F. Basler (2005). Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Virology 341: 179-89. [PubMed]

Reid, S. P., C. Valmas, O. Martinez, F. M. Sanchez and C. F. Basler (2007). Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin α proteins with activated STAT1. J Virol 81: 13469-77. [PubMed]

Ritchie, G., D. J. Harvey, U. Stroeher, F. Feldmann, H. Feldmann, V. Wahl-Jensen, L. Royle, R. A. Dwek and P. M. Rudd (2010). Identification of N-glycans from Ebola virus glycoproteins by matrix-assisted laser desorption/ionisation time-of-flight and negative ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 24: 571-85. [PubMed]

Rohde, C., S. Pfeiffer, S. Baumgart, S. Becker and V. Krähling (2022). Ebola virus activates IRE1α-dependent XBP1u splicing. Viruses 15: e0122. [PubMed]

Ryabchikova, E. I. and B. B. S. Price (2004). Ebola and Marburg viruses. A view of infection using electron microscopy. Columbus, USA, Battelle Press.

Saeed, M. F., A. A. Kolokoltsov, T. Albrecht and R. A. Davey (2010). Cellular entry of Ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog 6: e1001110. [PubMed]

Sakuma, T., T. Noda, S. Urata, Y. Kawaoka and J. Yasuda (2009). Inhibition of Lassa and Marburg virus production by tetherin. J Virol 83: 2382-5. [PubMed]

Sanchez, A. and M. P. Kiley (1987). Identification and analysis of Ebola virus messenger RNA. Virology 157: 414-20. [PubMed]

Sanchez, A., M. P. Kiley, B. P. Holloway and D. D. Auperin (1993). Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 29: 215-40. [PubMed]

Sanchez, A., M. P. Kiley, H.-D. Klenk and H. Feldmann (1992). Sequence analysis of the Marburg virus nucleoprotein gene: comparison to Ebola virus and other non-segmented negative-strand RNA viruses. J Gen Virol 73: 347-57. [PubMed]

Sanchez, A. and P. E. Rollin (2005). Complete genome sequence of an Ebola virus (Sudan species) responsible for a 2000 outbreak of human disease in Uganda. Virus Res 113: 16-25. [PubMed]

Sanchez, A., S. G. Trappier, B. W. J. Mahy, C. J. Peters and S. T. Nichol (1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93: 3602-7. [PubMed]

Sangha, A. K., J. Dong, L. Williamson, T. Hashiguchi, E. O. Saphire, J. E. Crowe, Jr. and J. Meiler (2017). Role of non-local interactions between CDR loops in binding affinity of MR78 antibody to Marburg virus glycoprotein. Structure 25: 1820-8 e2. [PubMed]

Saphire, E. O., S. L. Schendel, M. L. Fusco, K. Gangavarapu, B. M. Gunn, A. Z. Wec, P. J. Halfmann, J. M. Brannan, A. S. Herbert, X. Qiu, K. Wagh, S. He, E. E. Giorgi, J. Theiler, K. B. J. Pommert, T. B. Krause, H. L. Turner, C. D. Murin, J. Pallesen, E. Davidson, R. Ahmed, M. J. Aman, A. Bukreyev, D. R. Burton, J. E. Crowe, Jr., C. W. Davis, G. Georgiou, F. Krammer, C. A. Kyratsous, J. R. Lai, C. Nykiforuk, M. H. Pauly, P. Rijal, A. Takada, A. R. Townsend, V. Volchkov, L. M. Walker, C.-I. Wang, L. Zeitlin, B. J. Doranz, A. B. Ward, B. Korber, G. P. Kobinger, K. G. Andersen, Y. Kawaoka, G. Alter, K. Chandran, J. M. Dye and Viral Hemorrhagic Fever Immunotherapeutic Consortium (2018). Systematic analysis of monoclonal antibodies against Ebola virus GP defines features that contribute to protection. Cell 174: 938-52 e13. [PubMed]

Schornberg, K., S. Matsuyama, K. Kabsch, S. Delos, A. Bouton and J. White (2006). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80: 4174-8. [PubMed]

Schudt, G., O. Dolnik, L. Kolesnikova, N. Biedenkopf, A. Herwig and S. Becker (2015). Transport of ebolavirus nucleocapsids Is dependent on actin polymerization: live-cell imaging analysis of ebolavirus-infected cells. J Infect Dis 212 Suppl 2: S160-6. [PubMed]

Schudt, G., L. Kolesnikova, O. Dolnik, B. Sodeik and S. Becker (2013). Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances. Proc Natl Acad Sci USA 110: 14402-7. [PubMed]

Schwarz, T. M., M. R. Edwards, A. Diederichs, J. B. Alinger, D. W. Leung, G. K. Amarasinghe and C. F. Basler (2017). VP24-karyopherin alpha binding affinities differ between Ebolavirus species, influencing interferon inhibition and VP24 stability. J Virol 91: e01715-16. [PubMed]

Seuberlich, T., J. H. Kuhn and H. Schmidt-Posthaus (2023). Near-complete genome sequence of Lötschberg virus (Mononegavirales: Filoviridae) Identified in European Perch (Perca fluviatilis Linnaeus, 1758). Microbiol Resour Announc 12: e0002823. [PubMed]

Shabman, R. S., T. Hoenen, A. Groseth, O. Jabado, J. M. Binning, G. K. Amarasinghe, H. Feldmann and C. F. Basler (2013). An upstream open reading frame modulates Ebola virus polymerase translation and virus replication. PLoS Pathog 9: e1003147. [PubMed]

Sherwood, L. J. and A. Hayhurst (2019). Periplasmic nanobody-APEX2 fusions enable facile visualization of Ebola, Marburg, and Mĕnglà virus nucleoproteins, alluding to similar antigenic landscapes among Marburgvirus and Dianlovirus. Viruses 11: 364. [PubMed]

Shi, M., X.-D. Lin, X. Chen, J.-H. Tian, L.-J. Chen, K. Li, W. Wang, J.-S. Eden, J.-J. Shen, L. Liu, E. C. Holmes and Y.-Z. Zhang (2018). The evolutionary history of vertebrate RNA viruses. Nature 556: 197-202. [PubMed]

Siegert, R., H.-L. Shu, W. Slenczka, D. Peters and G. Müller (1967). On the etiology of an unknown human infectious disease originating from monkeys [Zur Ätiologie einer unbekannten, von Affen ausgegangenen menschlichen Infektionskrankheit" target="ictvref">PubMed]. Dtsch Med Wochenschr 92: 2341-3. [PubMed]

Siragam, V., G. Wong and X.-G. Qiu (2018). Animal models for filovirus infections. Zool Res 39: 15-24. [PubMed]

St Claire, M. C., D. R. Ragland, L. Bollinger and P. B. Jahrling (2017). Animal models of ebolavirus infection. Comp Med 67: 253-62. [PubMed]

Su, Z., C. Wu, L. Shi, P. Luthra, G. D. Pintilie, B. Johnson, J. R. Porter, P. Ge, M. Chen, G. Liu, T. E. Frederick, J. M. Binning, G. R. Bowman, Z. H. Zhou, C. F. Basler, M. L. Gross, D. W. Leung, W. Chiu and G. K. Amarasinghe (2018). Electron cryo-microscopy structure of Ebola virus nucleoprotein reveals a mechanism for nucleocapsid-like assembly. Cell 172: 966-78 e12. [PubMed]

Sugita, Y., H. Matsunami, Y. Kawaoka, T. Noda and M. Wolf (2018). Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution. Nature 563: 137-40. [PubMed]

Sun, W., F. Luan, J. Wang, L. Ma, X. Li, G. Yang, C. Hao, X. Qin and S. Dong (2022). Structural insights into the interactions between lloviu virus VP30 and nucleoprotein. Biochem Biophys Res Commun 616: 82-8. [PubMed]

Takada, A., C. Robison, H. Goto, A. Sanchez, K. G. Murti, M. A. Whitt and Y. Kawaoka (1997). A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 94: 14764-9. [PubMed]

Takadate, Y., R. Manzoor, T. Saito, Y. Kida, J. Maruyama, T. Kondoh, H. Miyamoto, H. Ogawa, M. Kajihara, M. Igarashi and A. Takada (2020). Receptor-mediated host cell preference of a bat-derived filovirus, Lloviu virus. Microorganisms 8: e1530. [PubMed]

Takamatsu, Y., O. Dolnik, T. Noda and S. Becker (2019). A live-cell imaging system for visualizing the transport of Marburg virus nucleocapsid-like structures. Virol J 16: 159. [PubMed]

Takamatsu, Y., L. Kolesnikova and S. Becker (2018). Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci USA 115: 1075-80. [PubMed]

Takamatsu, Y., V. Krähling, L. Kolesnikova, S. Halwe, C. Lier, S. Baumeister, T. Noda, N. Biedenkopf and S. Becker (2020). Serine-arginine protein kinase 1 regulates Ebola virus transcription. MBio 11: e02565-19. [PubMed]

Tchesnokov, E. P., P. Raeisimakiani, M. Ngure, D. Marchant and M. Gotte (2018). Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Sci Rep 8: 3970. [PubMed]

Tigabu, B., P. Ramanathan, A. Ivanov, X. Lin, P. A. Ilinykh, C. S. Parry, A. N. Freiberg, S. Nekhai and A. Bukreyev (2018). Phosphorylated VP30 of Marburg virus is a repressor of transcription. J Virol 92: e00426-18. [PubMed]

Timmins, J., G. Schoehn, S. Ricard-Blum, S. Scianimanico, T. Vernet, R. W. H. Ruigrok and W. Weissenhorn (2003). Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. J Mol Biol 326: 493-502. [PubMed]

Tóth, G. E., A. J. Hume, E. L. Suder, S. Zeghbib, Á. Ábrahám, Z. Lanszki, Z. Varga, Z. Tauber, F. Földes, B. Zana, D. Scaravelli, M. T. Scicluna, A. Pereswiet-Soltan, T. Görföl, C. Terregino, P. De Benedictis, I. Garcia-Dorival, C. Alonso, F. Jakab, E. Mühlberger, S. Leopardi and G. Kemenesi (2023). Isolation and genome characterization of Lloviu virus from Italian Schreibers's bats. Sci Rep 13: 11310. [PubMed]

Towner, J. S., B. R. Amman, T. K. Sealy, S. A. Carroll, J. A. Comer, A. Kemp, R. Swanepoel, C. D. Paddock, S. Balinandi, M. L. Khristova, P. B. H. Formenty, C. G. Albarino, D. M. Miller, Z. D. Reed, J. T. Kayiwa, J. N. Mills, D. L. Cannon, P. W. Greer, E. Byaruhanga, E. C. Farnon, P. Atimnedi, S. Okware, E. Katongole-Mbidde, R. Downing, J. W. Tappero, S. R. Zaki, T. G. Ksiazek, S. T. Nichol and P. E. Rollin (2009). Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 5: e1000536. [PubMed]

Towner, J. S., T. K. Sealy, M. L. Khristova, C. G. Albariño, S. Conlan, S. A. Reeder, P.-L. Quan, W. I. Lipkin, R. Downing, J. W. Tappero, S. Okware, J. Lutwama, B. Bakamutumaho, J. Kayiwa, J. A. Comer, P. E. Rollin, T. G. Ksiazek and S. T. Nichol (2008). Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog 4: e1000212. [PubMed]

Tran, E. E. H., J. A. Simmons, A. Bartesaghi, C. J. Shoemaker, E. Nelson, J. M. White and S. Subramaniam (2014). Spatial localization of the Ebola virus glycoprotein mucin-like domain determined by cryo-electron tomography. J Virol 88: 10958-62. [PubMed]

Trunschke, M., D. Conrad, S. Enterlein, J. Olejnik, K. Brauburger and E. Mühlberger (2013). The L-VP35 and L-L interaction domains reside in the amino terminus of the Ebola virus L protein and are potential targets for antivirals. Virology 441: 135-45. [PubMed]

Urata, S., T. Noda, Y. Kawaoka, S. Morikawa, H. Yokosawa and J. Yasuda (2007). Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. J Virol 81: 4895-9. [PubMed]

Urata, S. and J. Yasuda (2010). Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40. J Gen Virol 91: 228-34. [PubMed]

Valle, C., B. Martin, F. Ferron, V. Roig-Zamboni, A. Desmyter, F. Debart, J. J. Vasseur, B. Canard, B. Coutard and E. Decroly (2021). First insights into the structural features of Ebola virus methyltransferase activities. Nucleic Acids Res 49: 1737-48. [PubMed]

Valmas, C. and C. F. Basler (2011). Marburg virus VP40 antagonizes interferon signaling in a species-specific manner. J Virol 85: 4309-17. [PubMed]

Valmas, C., M. N. Grosch, M. Schümann, J. Olejnik, O. Martinez, S. M. Best, V. Krähling, C. F. Basler and E. Mühlberger (2010). Marburg virus evades interferon responses by a mechanism distinct from ebola virus. PLoS Pathog 6: e1000721. [PubMed]

van Tol, S., B. Kalveram, P. A. Ilinykh, A. Ronk, K. Huang, L. Aguilera-Aguirre, P. Bharaj, A. Hage, C. Atkins, M. I. Giraldo, M. Wakamiya, M. Gonzalez-Orozco, A. N. Warren, A. Bukreyev, A. N. Freiberg and R. Rajsbaum (2022). Ubiquitination of Ebola virus VP35 at lysine 309 regulates viral transcription and assembly. PLoS Pathog 18: e1010532. [PubMed]

Volchkov, V. E., S. Becker, V. A. Volchkova, V. A. Ternovoj, A. N. Kotov, S. V. Netesov and H.-D. Klenk (1995). GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214: 421-30. [PubMed]

Volchkov, V. E., H. Feldmann, V. E. Volchkova and H.-D. Klenk (1998a). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 95: 5762-7. [PubMed]

Volchkov, V. E., V. A. Volchkova, W. Slenczka, H.-D. Klenk and H. Feldmann (1998b). Release of viral glycoproteins during Ebola virus infection. Virology 245: 110-9. [PubMed]

Volchkov, V. E., V. A. Volchkova, U. Ströher, S. Becker, O. Dolnik, M. Cieplik, W. Garten, H.-D. Klenk and H. Feldmann (2000). Proteolytic processing of Marburg virus glycoprotein. Virology 268: 1-6. [PubMed]

Volchkova, V. A., H. Feldmann, H.-D. Klenk and V. E. Volchkov (1998). The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250: 408-14. [PubMed]

Volchkova, V. A., H.-D. Klenk and V. E. Volchkov (1999). Delta-peptide is the carboxy-terminal cleavage fragment of the nonstructural small glycoprotein sGP of Ebola virus. Virology 265: 164-71. [PubMed]

Wan, W., L. Kolesnikova, M. Clarke, A. Koehler, T. Noda, S. Becker and J. A. G. Briggs (2017). Structure and assembly of the Ebola virus nucleocapsid. Nature 551: 394-7. [PubMed]

Wang, H., Y. Shi, J. Song, J. Qi, G. Lu, J. Yan and G. F. Gao (2016). Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. Cell 164: 258-68. [PubMed]

Watanabe, S., T. Noda, P. Halfmann, L. Jasenosky and Y. Kawaoka (2007). Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. J Infect Dis 196 Suppl 2: S284-90. [PubMed]

Watanabe, S., T. Noda and Y. Kawaoka (2006). Functional mapping of the nucleoprotein of Ebola virus. J Virol 80: 3743-51. [PubMed]

Wec, A. Z., A. S. Herbert, C. D. Murin, E. K. Nyakatura, D. M. Abelson, J. M. Fels, S. He, R. M. James, M. A. de La Vega, W. Zhu, R. R. Bakken, E. Goodwin, H. L. Turner, R. K. Jangra, L. Zeitlin, X. Qiu, J. R. Lai, L. M. Walker, A. B. Ward, J. M. Dye, K. Chandran and Z. A. Bornholdt (2017). Antibodies from a human survivor define sites of vulnerability for broad protection against ebolaviruses. Cell 169: 878-90 e15. [PubMed]

Weik, M., J. Modrof, H.-D. Klenk, S. Becker and E. Mühlberger (2002). Ebola virus VP30-mediated transcription is regulated by RNA secondary structure formation. J Virol 76: 8532-9. [PubMed]

Welsch, S., L. Kolesnikova, V. Krähling, J. D. Riches, S. Becker and J. A. G. Briggs (2010). Electron tomography reveals the steps in filovirus budding. PLoS Pathog 6: e1000875. [PubMed]

Wenigenrath, J., L. Kolesnikova, T. Hoenen, E. Mittler and S. Becker (2010). Establishment and application of an infectious virus-like particle system for Marburg virus. J Gen Virol 91: 1325-34. [PubMed]

West, B. R., C. L. Moyer, L. B. King, M. L. Fusco, J. C. Milligan, S. Hui and E. O. Saphire (2018). Structural basis of pan-ebolavirus neutralization by a human antibody against a conserved, yet cryptic epitope. MBio 9: e01674-18. [PubMed]

Will, C., E. Mühlberger, D. Linder, W. Slenczka, H.-D. Klenk and H. Feldmann (1993). Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein. J Virol 67: 1203-10. [PubMed]

Williams, C. G., J. S. Gibbons, T. R. Keiffer, P. Luthra, M. R. Edwards and C. F. Basler (2020). Impact of Měnglà virus proteins on human and bat innate immune pathways. J Virol 94: e00191-20. [PubMed]

Winter, S. L., G. Golani, F. Lolicato, M. Vallbracht, K. Thiyagarajah, S. S. Ahmed, C. Lüchtenborg, O. T. Fackler, B. Brügger, T. Hoenen, W. Nickel, U. S. Schwarz and P. Chlanda (2023). The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J 42: e113578. [PubMed]

Wolf, Y. I., D. Kazlauskas, J. Iranzo, A. Lucía-Sanz, J. H. Kuhn, M. Krupovic, V. V. Dolja and E. V. Koonin (2018). Origins and evolution of the global RNA virome. MBio 9: e02329-18. [PubMed]

Wong, G., Z. Zhang, S. He, M.-A. de La Vega, K. Tierney, G. Soule, K. Tran, L. Fernando and X. Qiu (2018). Marburg and Ravn virus infections do not cause observable disease in ferrets. Journal of Infectious Diseases 218: S471-S4. [PubMed]

Xu, W., M. R. Edwards, D. M. Borek, A. R. Feagins, A. Mittal, J. B. Alinger, K. N. Berry, B. Yen, J. Hamilton, T. J. Brett, R. V. Pappu, D. W. Leung, C. F. Basler and G. K. Amarasinghe (2014). Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16: 187-200. [PubMed]

Xu, W., P. Luthra, C. Wu, J. Batra, D. W. Leung, C. F. Basler and G. K. Amarasinghe (2017). Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis. Nat Commun 8: 15576. [PubMed]

Yang, X.-L., Y.-Z. Zhang, R.-D. Jiang, H. Guo, W. Zhang, B. Li, N. Wang, L. Wang, C. Waruhiu, J.-H. Zhou, S.-Y. Li, P. Daszak, L.-F. Wang and Z.-L. Shi (2017). Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 2009 and 2015. Emerg Infect Dis 23: 482-6. [PubMed]

Yang, X. L., C. W. Tan, D. E. Anderson, R. D. Jiang, B. Li, W. Zhang, Y. Zhu, X. F. Lim, P. Zhou, X. L. Liu, W. Guan, L. Zhang, S. Y. Li, Y. Z. Zhang, L. F. Wang and Z. L. Shi (2019). Characterization of a filovirus (Měnglà virus) from Rousettus bats in China. Nature microbiology 4: 390-5. [PubMed]

Yuan, B., Q. Peng, J. Cheng, M. Wang, J. Zhong, J. Qi, G. F. Gao and Y. Shi (2022). Structure of the Ebola virus polymerase complex. Nature 610: 394-401. [PubMed]

Zhang, A. P. P., Z. A. Bornholdt, D. M. Abelson and E. O. Saphire (2014). Crystal structure of Marburg virus VP24. J Virol 88: 5859-63. [PubMed]

Zhang, A. P. P., Z. A. Bornholdt, T. Liu, D. M. Abelson, D. E. Lee, S. Li, V. L. Woods, Jr. and E. O. Saphire (2012). The Ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold. PLoS Pathog 8: e1002550. [PubMed]

Zhu, T., H. Song, R. Peng, Y. Shi, J. Qi and G. F. Gao (2017). Crystal structure of the Marburg virus nucleoprotein core domain chaperoned by a VP35 peptide reveals a conserved drug target for filovirus. J Virol 91: e00996-17. [PubMed]