References: Arteriviridae


Albina, E., F. Madec, R. Cariolet and J. Torrison (1994). Immune response and persistence of the porcine reproductive and respiratory syndrome virus in infected pigs and farm units. Vet Rec 134: 567-73. [PubMed]

Bailey, A. L., M. Lauck, R. R. Ghai, C. W. Nelson, K. Heimbruch, A. L. Hughes, T. L. Goldberg, J. H. Kuhn, A. J. Jasinska, N. B. Freimer, C. Apetrei and D. H. O'Connor (2016). Arteriviruses, pegiviruses, and lentiviruses are common among wild African monkeys. J Virol 90: 6724-37. [PubMed]

Balasuriya, U. B. and N. J. MacLachlan (2004). The immune response to equine arteritis virus: potential lessons for other arteriviruses. Vet Immunol Immunopathol 102: 107-29. [PubMed]

Bautista, E. M. and T. W. Molitor (1997). Cell-mediated immunity to porcine reproductive and respiratory syndrome virus in swine. Viral Immunol 10: 83-94. [PubMed]

Bautista, E. M., P. Suarez and T. W. Molitor (1999). T cell responses to the structural polypeptides of porcine reproductive and respiratory syndrome virus. Arch Virol 144: 117-34. [PubMed]

Cafruny, W. A., Q. A. Jones, T. R. Haven, N. L. Zitterkopf, P. G. Plagemann and R. R. Rowland (2003). Glucocorticoid regulation of lactate dehydrogenase-elevating virus replication in macrophages. Virus Res 92: 83-7. [PubMed]

Carossino, M., P. Dini, T. S. Kalbfleisch, A. T. Loynachan, I. F. Canisso, R. F. Cook, P. J. Timoney and U. B. R. Balasuriya (2019). Equine arteritis virus long-term persistence is orchestrated by CD8+ T lymphocyte transcription factors, inhibitory receptors, and the CXCL16/CXCR6 axis. PLoS Pathog 15: e1007950. [PubMed]

Carossino, M., P. Dini, T. S. Kalbfleisch, A. T. Loynachan, I. F. Canisso, K. M. Shuck, P. J. Timoney, R. F. Cook and U. B. R. Balasuriya (2018). Downregulation of microRNA eca-mir-128 in seminal exosomes and enhanced expression of CXCL16 in the stallion reproductive tract are associated with long-term persistence of equine arteritis virus. J Virol 92: e00015-18. [PubMed]

Carossino, M., A. T. Loynachan, I. F. Canisso, R. F. Cook, J. R. Campos, B. Nam, Y. Y. Go, E. L. Squires, M. H. T. Troedsson, T. Swerczek, F. Del Piero, E. Bailey, P. J. Timoney and U. B. R. Balasuriya (2017a). Equine arteritis virus has specific tropism for stromal cells and CD8(+) T and CD21(+) B lymphocytes but not for glandular epithelium at the primary site of persistent infection in the stallion reproductive tract. J Virol 91: e00418-17. [PubMed]

Carossino, M., B. Wagner, A. T. Loynachan, R. F. Cook, I. F. Canisso, L. Chelvarajan, C. L. Edwards, B. Nam, J. F. Timoney, P. J. Timoney and U. B. R. Balasuriya (2017b). Equine arteritis virus elicits a mucosal antibody response in the reproductive tract of persistently infected stallions. Clin Vaccine Immunol 24: e00215-17. [PubMed]

Chen, Z., S. Lawson, Z. Sun, X. Zhou, X. Guan, J. Christopher-Hennings, E. A. Nelson and Y. Fang (2010). Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist. Virology 398: 87-97. [PubMed]

Costers, S., D. J. Lefebvre, J. Van Doorsselaere, M. Vanhee, P. L. Delputte and H. J. Nauwynck (2010). GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing epitope that is susceptible to immunoselection in vitro. Arch Virol 155: 371-8. [PubMed]

Coutelier, J. P.  (2014). Lactate dehydrogenase-elevating virus infection: an experimental model of immune microenvironment modulation. Virologie (Montrouge) 18: 17-24. [PubMed]

Dastjerdi, A., I. Inglese, T. Partridge, S. Karuna, D. J. Everest, J.-P. Frossard, M. P. Dagleish and M. F. Stidworthy (2021). Novel arterivirus associated with outbreak of fatal encephalitis in European hedgehogs, England, 2019. Emerging Infect Dis 27: 578-581. [PubMed]

den Boon, J. A., K. S. Faaberg, J. J. Meulenberg, A. L. Wassenaar, P. G. Plagemann, A. E. Gorbalenya and E. J. Snijder (1995). Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. J Virol 69: 4500-5. [PubMed]

Deng, Z., K. C. Lehmann, X. Li, C. Feng, G. Wang, Q. Zhang, X. Qi, L. Yu, X. Zhang, W. Feng, W. Wu, P. Gong, Y. Tao, C. C. Posthuma, E. J. Snijder, A. E. Gorbalenya and Z. Chen (2014). Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Res 42: 3464-77. [PubMed]

Di, H., J. C. Madden, Jr., E. K. Morantz, H. Y. Tang, R. L. Graham, R. S. Baric and M. A. Brinton (2017). Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc Natl Acad Sci U S A 114: E8895-E8904. [PubMed]

Diaz, I., J. Pujols, L. Ganges, M. Gimeno, L. Darwich, M. Domingo and E. Mateu (2009). In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus. Vaccine 27: 5603-11. [PubMed]

Faaberg, K. S., U. B. Balasuriya, M. A. Brinton, A. E. Gorbalenya, F. C.-C. Leung, H. Nauwynck, E. J. Snijder, T. Stadejek, H. Yang and D. Yoo. (2012). Family Arteriviridae In Virus Taxonomy, the 9th Report of the International Committee on Taxonomy of Viruses,, pp. 796-805. Edited by A. M. Q. King, M. J. Adams, E. B. Carstens & E. J. Lefkowitz. San Diego: Elsevier.

Faaberg, K. S., C. Even, G. A. Palmer and P. G. Plagemann (1995). Disulfide bonds between two envelope proteins of lactate dehydrogenase-elevating virus are essential for viral infectivity. J Virol 69: 613-7. [PubMed]

Faaberg, K. S. and P. G. Plagemann (1997). ORF 3 of lactate dehydrogenase-elevating virus encodes a soluble, nonstructural, highly glycosylated, and antigenic protein. Virology 227: 245-51. [PubMed]

Fang, Y. and E. J. Snijder (2010). The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res 154: 61-76. [PubMed]

Firth, A. E., J. C. Zevenhoven-Dobbe, N. M. Wills, Y. Y. Go, U. B. R. Balasuriya, J. F. Atkins, E. J. Snijder and C. C. Posthuma (2011). Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92: 1097-1106. [PubMed]

Gaignage, M., R. G. Marillier, C. Uyttenhove, N. Dauguet, A. Saxena, B. Ryffel, T. Michiels, J. P. Coutelier and J. Van Snick (2017). Mouse nidovirus LDV infection alleviates graft versus host disease and induces type I IFN-dependent inhibition of dendritic cells and allo-responsive T cells. Immun Inflamm Dis 5: 200-213. [PubMed]

Go, Y. Y., E. Bailey, D. G. Cook, S. J. Coleman, J. N. Macleod, K. C. Chen, P. J. Timoney and U. B. Balasuriya (2011a). Genome-wide association study among four horse breeds identifies a common haplotype associated with in vitro CD3+ T cell susceptibility/resistance to equine arteritis virus infection. J Virol 85: 13174-84. [PubMed]

Go, Y. Y., E. J. Snijder, P. J. Timoney and U. B. Balasuriya (2011b). Characterization of equine humoral antibody response to the nonstructural proteins of equine arteritis virus. Clin Vaccine Immunol 18: 268-79. [PubMed]

Go, Y. Y., J. Zhang, P. J. Timoney, R. F. Cook, D. W. Horohov and U. B. Balasuriya (2010). Complex interactions between the major and minor envelope proteins of equine arteritis virus determine its tropism for equine CD3+ T lymphocytes and CD14+ monocytes. J Virol 84: 4898-911. [PubMed]

Gorbalenya, A. E., L. Enjuanes, J. Ziebuhr and E. J. Snijder (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res 117: 17-37. [PubMed]

Gravell, M., W. T. London, M. E. Leon, A. E. Palmer and R. S. Hamilton (1986). Differences among isolates of simian hemorrhagic fever (SHF) virus. Proc Soc Exp Biol Med 181: 112-9. [PubMed]

Gulyaeva, A., M. Dunowska, E. Hoogendoorn, J. Giles, D. Samborskiy and A. E. Gorbalenya (2017). Domain organization and evolution of the highly divergent 5' coding region of genomes of arteriviruses, including the novel possum nidovirus. J Virol 91: 02096-16. [PubMed]

Han, J., M. S. Rutherford and K. S. Faaberg (2009). The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. J Virol 83: 9449-63. [PubMed]

Huang, Y. W., B. A. Dryman, W. Li and X. J. Meng (2009). Porcine DC-SIGN: molecular cloning, gene structure, tissue distribution and binding characteristics. Dev Comp Immunol 33: 464-80. [PubMed]

Johnson, C. R., T. F. Griggs, J. Gnanandarajah and M. P. Murtaugh (2011). Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92: 1107-1116. [PubMed]

Kappes, M. A. and K. S. Faaberg (2015). PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 479-480: 475-86. [PubMed]

Kappes, M. A., C. L. Miller and K. S. Faaberg (2013). Highly divergent strains of porcine reproductive and respiratory syndrome virus incorporate multiple isoforms of nonstructural protein 2 into virions. J Virol 87: 13456-65. [PubMed]

Kesaniemi, J., A. Lavrinienko, E. Tukalenko, T. Mappes, P. C. Watts and J. Jurvansuu (2019). Infection load and prevalence of novel viruses identified from the bank vole do not associate with exposure to environmental radioactivity. Viruses 12: doi: 10.3390/v12010044. [PubMed]

Kimman, T. G., L. A. Cornelissen, R. J. Moormann, J. M. Rebel and N. Stockhofe-Zurwieden (2009). Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 27: 3704-18. [PubMed]

Kuhn, J. H., M. Lauck, A. L. Bailey, A. M. Shchetinin, T. V. Vishnevskaya, Y. Bao, T. F. Ng, M. LeBreton, B. S. Schneider, A. Gillis, U. Tamoufe, D. Diffo Jle, J. M. Takuo, N. O. Kondov, L. L. Coffey, N. D. Wolfe, E. Delwart, A. N. Clawson, E. Postnikova, L. Bollinger, M. G. Lackemeyer, S. R. Radoshitzky, G. Palacios, J. Wada, Z. V. Shevtsova, P. B. Jahrling, B. A. Lapin, P. G. Deriabin, M. Dunowska, S. V. Alkhovsky, J. Rogers, T. C. Friedrich, D. H. O'Connor and T. L. Goldberg (2016). Reorganization and expansion of the nidoviral family Arteriviridae. Arch Virol 161: 755-68. [PubMed]

Lauber, C. and A. E. Gorbalenya (2012). Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses. J Virol 86: 3890-904. [PubMed]

Lauck, M., S. V. Alkhovsky, Y. Bao, A. L. Bailey, Z. V. Shevtsova, A. M. Shchetinin, T. V. Vishnevskaya, M. G. Lackemeyer, E. Postnikova, S. Mazur, J. Wada, S. R. Radoshitzky, T. C. Friedrich, B. A. Lapin, P. G. Deriabin, P. B. Jahrling, T. L. Goldberg, D. H. O'Connor and J. H. Kuhn (2015). Historical outbreaks of simian hemorrhagic fever in captive macaques were caused by distinct arteriviruses. J Virol 89: 8082-7. [PubMed]

Lehmann, K. C., A. E. Gorbalenya, E. J. Snijder and C. C. Posthuma (2016). Arterivirus RNA-dependent RNA polymerase: Vital enzymatic activity remains elusive. Virology 487: 68-74. [PubMed]

Lehmann, K. C., A. Gulyaeva, J. C. Zevenhoven-Dobbe, G. M. Janssen, M. Ruben, H. S. Overkleeft, P. A. van Veelen, D. V. Samborskiy, A. A. Kravchenko, A. M. Leontovich, I. A. Sidorov, E. J. Snijder, C. C. Posthuma and A. E. Gorbalenya (2015a). Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses. Nucleic Acids Res 43: 8416-34. [PubMed]

Lehmann, K. C., L. Hooghiemstra, A. Gulyaeva, D. V. Samborskiy, J. C. Zevenhoven-Dobbe, E. J. Snijder, A. E. Gorbalenya and C. C. Posthuma (2015b). Arterivirus nsp12 versus the coronavirus nsp16 2'-O-methyltransferase: comparison of the C-terminal cleavage products of two nidovirus pp1ab polyproteins. J Gen Virol 96: 2643-2655. [PubMed]

Li, Y., A. E. Firth, I. Brierley, Y. Cai, S. Napthine, T. Wang, X. Yan, J. H. Kuhn and Y. Fang (2019). Programmed -2/-1 ribosomal frameshifting in simarteriviruses: an evolutionarily conserved mechanism. J Virol 93: e00370-19. [PubMed]

Li, Y., A. Tas, Z. Sun, E. J. Snijder and Y. Fang (2015). Proteolytic processing of the porcine reproductive and respiratory syndrome virus replicase. Virus Res 202: 48-59. [PubMed]

Lunney, J. K., D. A. Benfield and R. R. Rowland (2010). Porcine reproductive and respiratory syndrome virus: an update on an emerging and re-emerging viral disease of swine. Virus Res 154: 1-6. [PubMed]

Manolaridis, I., C. Gaudin, C. C. Posthuma, J. C. Zevenhoven-Dobbe, I. Imbert, B. Canard, G. Kelly, P. A. Tucker, M. R. Conte and E. J. Snijder (2011). Structure and genetic analysis of the arterivirus nonstructural protein 7alpha. J Virol 85: 7449-53. [PubMed]

Martinez, D., M. A. Brinton, T. G. Tachovsky and A. H. Phelps (1980). Identification of lactate dehydrogenase-elevating virus as the etiological agent of genetically restricted, age-dependent polioencephalomyelitis of mice. Infect Immun 27: 979-87. [PubMed]

Nguyen, L. T., H. A. Schmidt, A. von Haeseler and B. Q. Minh (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268-74. [PubMed]

Oleksiewicz, M. B., A. Botner and P. Normann (2002). Porcine B-cells recognize epitopes that are conserved between the structural proteins of American- and European-type porcine reproductive and respiratory syndrome virus. J Gen Virol 83: 1407-1418. [PubMed]

Parida, R., I. S. Choi, D. A. Peterson, A. K. Pattnaik, W. Laegreid, F. A. Zuckermann and F. A. Osorio (2012). Location of T-cell epitopes in nonstructural proteins 9 and 10 of type-II porcine reproductive and respiratory syndrome virus. Virus Res 169: 13-21. [PubMed]

Pasternak, A. O., W. J. Spaan and E. J. Snijder (2006). Nidovirus transcription: how to make sense. .? J Gen Virol 87: 1403-21. [PubMed]

Plagemann, P. G.  (2001). Complexity of the single linear neutralization epitope of the mouse arterivirus lactate dehydrogenase-elevating virus. Virology 290: 11-20. [PubMed]

Plagemann, P. G., R. R. Rowland, C. Even and K. S. Faaberg (1995). Lactate dehydrogenase-elevating virus: an ideal persistent virus? Springer Semin Immunopathol 17: 167-86. [PubMed]

Sarkar, S., E. Bailey, Y. Y. Go, R. F. Cook, T. Kalbfleisch, J. Eberth, R. L. Chelvarajan, K. M. Shuck, S. Artiushin, P. J. Timoney and U. B. Balasuriya (2016a). Allelic variation in CXCL16 determines CD3+ T lymphocyte susceptibility to equine arteritis virus infection and establishment of long-term carrier state in the stallion. PLoS Genet 12: e1006467. [PubMed]

Sarkar, S., L. Chelvarajan, Y. Y. Go, F. Cook, S. Artiushin, S. Mondal, K. Anderson, J. Eberth, P. J. Timoney, T. S. Kalbfleisch, E. Bailey and U. B. Balasuriya (2016b). Equine arteritis virus uses equine CXCL16 as an entry receptor. J Virol 90: 3366-84. [PubMed]

Schliep, K. P.  (2011). phangorn: phylogenetic analysis in R. Bioinformatics 27: 592-3. [PubMed]

Shi, M., X.-D. Lin, X. Chen, J.-H. Tian, L.-J. Chen, K. Li, W. Wang, J.-S. Eden, J.-J. Shen, L. Liu, E. C. Holmes and Y.-Z. Zhang (2018). The evolutionary history of vertebrate RNA viruses. Nature 556: 197-202. [PubMed]

Shi, Y., X. Tong, G. Ye, R. Xiu, L. Li, L. Sun, J. Shi, M. Li, Y. Song, C. Fan, K. Shi, Z. F. Fu, S. Xiao and G. Peng (2020). Structural characterization of the helicase nsp10 encoded by porcine reproductive and respiratory syndrome virus. J Virol 94: e02158-19. [PubMed]

Snijder, E. J., M. Kikkert and Y. Fang (2013). Arterivirus molecular biology and pathogenesis. J Gen Virol 94: 2141-2163. [PubMed]

Spilman, M. S., C. Welbon, E. Nelson and T. Dokland (2009). Cryo-electron tomography of porcine reproductive and respiratory syndrome virus: organization of the nucleocapsid. J Gen Virol 90: 527-535. [PubMed]

Sun, Y., F. Xue, Y. Guo, M. Ma, N. Hao, X. C. Zhang, Z. Lou, X. Li and Z. Rao (2009). Crystal structure of porcine reproductive and respiratory syndrome virus leader protease Nsp1alpha. J Virol 83: 10931-40. [PubMed]

Vairo, S., H. Favoreel, A. Scagliarini and H. Nauwynck (2013). Identification of target cells of a European equine arteritis virus strain in experimentally infected ponies. Vet Microbiol 167: 235-41. [PubMed]

Van Breedam, W., H. Van Gorp, J. Q. Zhang, P. R. Crocker, P. L. Delputte and H. J. Nauwynck (2010). The M/GP(5) glycoprotein complex of porcine reproductive and respiratory syndrome virus binds the sialoadhesin receptor in a sialic acid-dependent manner. PLoS Pathog 6: e1000730. [PubMed]

van Dinten, L. C., A. L. Wassenaar, A. E. Gorbalenya, W. J. Spaan and E. J. Snijder (1996). Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. J Virol 70: 6625-33. [PubMed]

Van Gorp, H., W. Van Breedam, J. Van Doorsselaere, P. L. Delputte and H. J. Nauwynck (2010). Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. J Virol 84: 3101-5. [PubMed]

van Kasteren, P. B., B. A. Bailey-Elkin, T. W. James, D. K. Ninaber, C. Beugeling, M. Khajehpour, E. J. Snijder, B. L. Mark and M. Kikkert (2013). Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. Proc Natl Acad Sci U S A 110: E838-47. [PubMed]

Vatter, H. A. and M. A. Brinton (2014). Differential responses of disease-resistant and disease-susceptible primate macrophages and myeloid dendritic cells to simian hemorrhagic fever virus infection. J Virol 88: 2095-106. [PubMed]

Vatter, H. A., H. Di, E. F. Donaldson, R. S. Baric and M. A. Brinton (2014a). Each of the eight simian hemorrhagic fever virus minor structural proteins is functionally important. Virology 462-463: 351-62. [PubMed]

Vatter, H. A., H. Di, E. F. Donaldson, G. U. Radu, T. R. Maines and M. A. Brinton (2014b). Functional analyses of the three simian hemorrhagic fever virus nonstructural protein 1 papain-like proteases. J Virol 88: 9129-40. [PubMed]

Vatter, H. A., E. F. Donaldson, J. Huynh, S. Rawlings, M. Manoharan, A. Legasse, S. Planer, M. F. Dickerson, A. D. Lewis, L. M. Colgin, M. K. Axthelm, J. K. Pecotte, R. S. Baric, S. W. Wong and M. A. Brinton (2015). A simian hemorrhagic fever virus isolate from persistently infected baboons efficiently induces hemorrhagic fever disease in Japanese macaques. Virology 474: 186-98. [PubMed]

Wahl-Jensen, V., J. C. Johnson, M. Lauck, J. T. Weinfurter, L. H. Moncla, A. M. Weiler, O. Charlier, O. Rojas, R. Byrum, D. R. Ragland, L. Huzella, E. Zommer, M. Cohen, J. G. Bernbaum, Y. Cai, H. B. Sanford, S. Mazur, R. F. Johnson, J. Qin, G. F. Palacios, A. L. Bailey, P. B. Jahrling, T. L. Goldberg, D. H. O'Connor, T. C. Friedrich and J. H. Kuhn (2016). Divergent simian arteriviruses cause simian hemorrhagic fever of differing severities in macaques. MBio 7: e02009-15. [PubMed]

Whitworth, K. M. and R. S. Prather (2017). Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev 84: 926-933. [PubMed]

Wu, Z., L. Lu, J. Du, L. Yang, X. Ren, B. Liu, J. Jiang, J. Yang, J. Dong, L. Sun, Y. Zhu, Y. Li, D. Zheng, C. Zhang, H. Su, Y. Zheng, H. Zhou, G. Zhu, H. Li, A. Chmura, F. Yang, P. Daszak, J. Wang, Q. Liu and Q. Jin (2018). Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6: doi: 10.1186/s40168-018-0554-9. [PubMed]

Xie, J., I. Christiaens, B. Yang, W. V. Breedam, T. Cui and H. J. Nauwynck (2017). Molecular cloning of porcine Siglec-3, Siglec-5 and Siglec-10, and identification of Siglec-10 as an alternative receptor for porcine reproductive and respiratory syndrome virus (PRRSV). J Gen Virol 98: 2030-2042. [PubMed]

Yuan, S., M. P. Murtaugh and K. S. Faaberg (2000). Heteroclite subgenomic RNAs are produced in porcine reproductive and respiratory syndrome virus infection. Virology 275: 158-69. [PubMed]

Zhang, M., X. Li, Z. Deng, Z. Chen, Y. Liu, Y. Gao, W. Wu and Z. Chen (2017). Structural biology of the arterivirus nsp11 endoribonucleases. J Virol 91: e01309-16. [PubMed]