References: Metaviridae

 

Bergman, C. M., H. Quesneville, D. Anxolabéhère and M. Ashburner (2006). Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome. Genome Biol 7: R112. [PubMed]

Butler, M., T. Goodwin and R. Poulter (2001a). An unusual vertebrate LTR retrotransposon from the cod Gadus morhua. Mol Biol Evol 18: 443-447. [PubMed]

Butler, M., T. Goodwin, M. Simpson, M. Singh and R. Poulter (2001b). Vertebrate LTR retrotransposons of the Tf1/sushi group. J Mol Evol 52: 260-274. [PubMed]

Dodonova, S. O., S. Prinz, V. Bilanchone, S. Sandmeyer and J. A. G. Briggs (2019). Structure of the Ty3/Gypsy retrotransposon capsid and the evolution of retroviruses. Proc Natl Acad Sci USA 116: 10048-10057. [PubMed]

Esnault, C. and H. L. Levin (2015). The long terminal repeat retrotransposons Tf1 and Tf2 of Schizosaccharomyces pombe. Microbiol Spectr 3: 10.1128/microbiolspec.MDNA1123-0040-2014. [PubMed]

Gao, X., Y. Hou, H. Ebina, H. L. Levin and D. F. Voytas (2008). Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18: 359-369. [PubMed]

Gorinsek, B., F. Gubensek and D. Kordis (2005). Phylogenomic analysis of chromoviruses. Cytogenet Genome Res 110: 543-552. [PubMed]

Kim, A., C. Terzian, P. Santamaria, A. Pélisson, N. Purd'homme and A. Bucheton (1994). Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc Natl Acad Sci USA 91: 1285-1289. [PubMed]

Koonin, E. V., A. R. Mushegian, E. V. Ryabov and V. V. Dolja (1991). Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72: 2895-2903. [PubMed]

Krupovic, M., J. Blomberg, J. M. Coffin, I. Dasgupta, H. Fan, A. D. Geering, R. Gifford, B. Harrach, R. Hull, W. Johnson, J. F. Kreuze, D. Lindemann, C. Llorens, B. Lockhart, J. Mayer, E. Muller, N. E. Olszewski, H. R. Pappu, M. M. Pooggin, K. R. Richert-Pöggeler, S. Sabanadzovic, H. Sanfacon, J. E. Schoelz, S. Seal, L. Stavolone, J. P. Stoye, P. Y. Teycheney, M. Tristem, E. V. Koonin and J. H. Kuhn (2018). Ortervirales: new virus order unifying five families of reverse-transcribing viruses. J Virol 92: e00515-18. [PubMed

Krupovic, M. and E. V. Koonin (2017). Homologous capsid proteins testify to the common ancestry of retroviruses, caulimoviruses, pseudoviruses, and metaviruses. J Virol 91: e00210-17. [PubMed]

Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson and D. G. Higgins (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. [PubMed]

Llorens, C., M. A. Fares and A. Moya (2008). Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evol Biol 8: 276. [PubMed

Llorens, C., R. Futami, L. Covelli, L. Domínguez-Escribá, J. M. Viu, D. Tamarit, J. Aguilar-Rodríguez, M. Vicente-Ripolles, G. Fuster, G. P. Bernet, F. Maumus, A. Munoz-Pomer, J. M. Sempere, A. Latorre and A. Moya (2011). The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39: D70-74. [PubMed]

Llorens, C., A. Muñoz-Pomer, L. Bernad, H. Botella and A. Moya (2009). Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 4: 41. [PubMed]

Malik, H. S. and T. H. Eickbush (1999). Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186-5190. [PubMed

Malik, H. S., S. Henikoff and T. H. Eickbush (2000). Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10: 1307-1318. [PubMed]

Marín, I. and C. Lloréns (2000). Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17: 1040-1049. [PubMed]

Nowotny, M.  (2009). Retroviral integrase superfamily: the structural perspective. EMBO Rep 10: 144-151. [PubMed]

Pantazidis, A., M. Labrador and A. Fontdevila (1999). The retrotransposon Osvaldo from Drosophila buzzatii displays all structural features of a functional retrovirus. Mol Biol Evol 16: 909-921. [PubMed]

Pelisson, A., L. Mejlumian, V. Robert, C. Terzian and A. Bucheton (2002). Drosophila germline invasion by the endogenous retrovirus gypsy: involvement of the viral env gene. Insect Biochem Mol Biol 32: 1249-1256. [PubMed]

Rawlings, N. D., A. J. Barrett, P. D. Thomas, X. Huang, A. Bateman and R. D. Finn (2018). The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46: D624-D632. [PubMed

Sarot, E., G. Payen-Groschêne, A. Bucheton and A. Pélisson (2004). Evidence for a piwi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166: 1313-1321. [PubMed]

Song, S. U., T. Gerasimova, M. Kurkulos, J. D. Boeke and V. G. Corces (1994). An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev 8: 2046-2057. [PubMed]

Wei, W. and M. D. Brennan (2001). The gypsy insulator can act as a promoter-specific transcriptional stimulator. Mol Cell Biol 21: 7714-7720. [PubMed]

Wright, D. A. and D. F. Voytas (2002). Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res 12: 122-131. [PubMed]