References: Secoviridae

Amari, K., A. Lerich, C. Schmitt-Keichinger, V. V. Dolja and C. Ritzenthaler (2011). Tubule-guided cell-to-cell movement of a plant virus requires class XI myosin motors. PLoS Pathog 7: e1002327. [PubMed]

Bockelman, D. L., L. E. Claflin and J. K. Uyemoto (1982). Host Range and Seed-Transmission Studies of Maize Chlorotic Mottle Virus in Grasses and Corn. Plant Dis 66: 216-8.

Carette, J. E., J. van Lent, S. A. MacFarlane, J. Wellink and A. van Kammen (2002). Cowpea mosaic virus 32- and 60-kilodalton replication proteins target and change the morphology of endoplasmic reticulum membranes. J Virol 76: 6293-301. [PubMed]

Carrier, K., F. Hans and H. Sanfaçon (1999). Mutagenesis of amino acids at two tomato ringspot nepovirus cleavage sites: effect on proteolytic processing in cis and in trans by the 3C-like protease. Virology 258: 161-75. [PubMed]

Carrier, K., Y. Xiang and H. Sanfaçon (2001). Genomic organization of RNA2 of Tomato ringspot virus: processing at a third cleavage site in the N-terminal region of the polyprotein in vitro. J Gen Virol 82: 1785-90. [PubMed]

Carvalho, C. M., J. Wellink, S. G. Ribeiro, R. W. Goldbach and J. W. Van Lent (2003). The C-terminal region of the movement protein of Cowpea mosaic virus is involved in binding to the large but not to the small coat protein. J Gen Virol 84: 2271-7. [PubMed]

Chandrasekar, V. and J. E. Johnson (1998). The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 6: 157-71. [PubMed]

Chaouch, R., M. G. Redinbaugh, M. Marrakchi and S. A. Hogenhout (2004). Genomics of the Severe Isolate of Maize Chlorotic Dwarf Virus. Plant Protection Science 40: 113-9.

Chay, C. A., X. Guan and G. Bruening (1997). Formation of circular satellite tobacco ringspot virus RNA in protoplasts transiently expressing the linear RNA. Virology 239: 413-25. [PubMed]

Chen, Z. G., C. Stauffacher, Y. Li, T. Schmidt, W. Bomu, G. Kamer, M. Shanks, G. Lomonossoff and J. E. Johnson (1989). Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245: 154-9. [PubMed]

Di Tommaso, P., S. Moretti, I. Xenarios, M. Orobitg, A. Montanyola, J. M. Chang, J. F. Taly and C. Notredame (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res 39: W13-7. [PubMed]

Dullemans, A. M., M. Botermans, M. J. D. de Kock, C. E. de Krom, T. A. J. van der Lee, J. W. Roenhorst, I. J. E. Stulemeijer, M. Verbeek, M. Westenberg and R. A. A. van der Vlugt (2020). Creation of a new genus in the family Secoviridae substantiated by sequence variation of newly identified strawberry latent ringspot virus isolates. Arch Virol 165: 21-31. [PubMed]

Feldstein, P. A., L. Levy, J. W. Randles and R. A. Owens (1997). Synthesis and two-dimensional electrophoretic analysis of mixed populations of circular and linear RNAs. Nucleic Acids Res 25: 4850-4. [PubMed]

Ferriol, I., D. M. Silva Junior, J. C. Nigg, E. J. Zamora-Macorra and B. W. Falk (2016). Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins. Virology 498: 109-15. [PubMed]

Firth, A. E. and J. F. Atkins (2008). Bioinformatic analysis suggests that a conserved ORF in the waikaviruses encodes an overlapping gene. Arch Virol 153: 1379-83. [PubMed]

Fuchs, M., C. Schmitt-Keichinger and H. Sanfaçon (2017). A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Adv Virus Res 97: 61-105. [PubMed]

Gaire, F., C. Schmitt, C. Stussi-Garaud, L. Pinck and C. Ritzenthaler (1999). Protein 2A of grapevine fanleaf nepovirus is implicated in RNA2 replication and colocalizes to the replication site. Virology 264: 25-36. [PubMed]

Ghoshal, B. and H. Sanfaçon (2015). Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 479-480: 167-79. [PubMed]

Gorbalenya, A. E., A. P. Donchenko, V. M. Blinov and E. V. Koonin (1989). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243: 103-14. [PubMed]

Gottula, J., D. Lapato, K. Cantilina, S. Saito, B. Bartlett and M. Fuchs (2013). Genetic variability, evolution, and biological effects of Grapevine fanleaf virus satellite RNAs. Phytopathology 103: 1180-7. [PubMed]

Hansen, A. J., G. Nyland, F. D. Mcelroy and R. Stacesmi (1974). Origin, Cause, Host Range and Spread of Cherry Rasp Leaf Disease in North-America. Phytopathology 64: 721-7.

Hibino, H. (1983). Transmission of 2 Rice Tungro-Associated Viruses and Rice Waika Virus from Doubly or Singly Infected Source Plants by Leafhopper Vectors. Plant Dis 67: 774-7.

Isogai, M., K. Watanabe, Y. Uchidate and N. Yoshikawa (2006). Protein-protein- and protein-RNA-binding properties of the movement protein and VP25 coat protein of Apple latent spherical virus. Virology 352: 178-87. [PubMed]

Iwanami, T. (2008). Sadwavirus. In Encylopedia of Virology, pp. 523-6. Edited by B. W. J. Mahy & M. H. Van Regenmortel. Oxford: Elsevier.

Jones, R. A. C. (1982). Tests for transmission of four potato viruses through potato true seed. Ann Appl Biol 100: 315-20.

Kumar, S., G. Stecher and K. Tamura (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-4. [PubMed]

Lai-Kee-Him, J., P. Schellenberger, C. Dumas, E. Richard, S. Trapani, V. Komar, G. Demangeat, C. Ritzenthaler and P. Bron (2013). The backbone model of the Arabis mosaic virus reveals new insights into functional domains of Nepovirus capsid. J Struct Biol 182: 1-9. [PubMed]

Laporte, C., G. Vetter, A. M. Loudes, D. G. Robinson, S. Hillmer, C. Stussi-Garaud and C. Ritzenthaler (2003). Involvement of the secretory pathway and the cytoskeleton in intracellular targeting and tubule assembly of Grapevine fanleaf virus movement protein in tobacco BY-2 cells. Plant Cell 15: 2058-75. [PubMed]

Le Gall, O., H. Sanfaçon, M. Ikegami, T. Iwanami, T. Jones, A. Karasev, K. Lehto, J. Wellink, T. Wetzel and N. Yoshikawa (2007). Cheravirus and Sadwavirus: two unassigned genera of plant positive-sense single-stranded RNA viruses formerly considered atypical members of the genus Nepovirus (family Comoviridae). Arch Virol 152: 1767-74. [PubMed]

Lecoq, H., E. Verdin, M. Tepfer, C. Wipf-Scheibel, P. Millot, G. Dafalla and C. Desbiez (2016). Characterization and occurrence of squash chlorotic leaf spot virus, a tentative new torradovirus infecting cucurbits in Sudan. Arch Virol 161: 1651-5. [PubMed]

Lin, J., J. Guo, J. Finer, A. E. Dorrance, M. G. Redinbaugh and F. Qu (2014). The bean pod mottle virus RNA2-encoded 58-kilodalton protein P58 is required in cis for RNA2 accumulation. J Virol 88: 3213-22. [PubMed]

Lin, T., A. J. Clark, Z. Chen, M. Shanks, J. B. Dai, Y. Li, T. Schmidt, P. Oxelfelt, G. P. Lomonossoff and J. E. Johnson (2000). Structural fingerprinting: subgrouping of comoviruses by structural studies of red clover mottle virus to 2.4-A resolution and comparisons with other comoviruses. J Virol 74: 493-504. [PubMed]

Lin, T. and J. E. Johnson (2003). Structures of picorna-like plant viruses: implications and applications. Adv Virus Res 62: 167-239. [PubMed]

Liu, C., L. Ye, G. Lang, C. Zhang, J. Hong and X. Zhou (2011). The VP37 protein of Broad bean wilt virus 2 induces tubule-like structures in both plant and insect cells. Virus Res 155: 42-7. [PubMed]

Mann, K. S., J. Chisholm and H. Sanfaçon (2019). Strawberry mottle virus (family Secoviridae, order Picornavirales) encodes a novel glutamic protease to process the RNA2 polyprotein at two cleavage sites. J Virol 93: e01679-18. [PubMed]

Margis, R. and L. Pinck (1992). Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190: 884-8. [PubMed]

Menzel, W. and H. J. Vetten (2008). Complete nucleotide sequence of an isolate of the Anthriscus strain of Parsnip yellow fleck virus. Arch Virol 153: 2173-5. [PubMed]

Murant, A. F. and R. A. Gould (1968). Purification, properties and transmission of parsnip yellow fleck, a semi-persistent, aphid-borne virus. Ann Appl Biol 62: 123-37.

Murant, A. F., S. K. Hemida and M. A. Mayo (1987). Abstracts, 7th International Congress of Virology, Edmonton, Canada.183.

Murant, A. F., I. M. Roberts and A. M. Hutcheson (1975). Effects of Parsnip Yellow Fleck Virus on Plant-Cells. J Gen Virol 26: 277-85.

Nakamura, K., N. Yamagishi, M. Isogai, S. Komori, T. Ito and N. Yoshikawa (2011). Seed and pollen transmission of Apple latent spherical virus in apple. J Gen Plant Pathol 77: 48-53.

Nyland, G., B. F. Lownsbery, S. K. Lowe and J. F. Mitchel (1969). The transmission of Cherry rasp leaf virus by Xiphinema americanum. Phytopathology 59: 1111-2.

Peters, S. A., W. G. Voorhorst, J. Wery, J. Wellink and A. van Kammen (1992). A regulatory role for the 32K protein in proteolytic processing of cowpea mosaic virus polyproteins. Virology 191: 81-9. [PubMed]

Petrzik, K., J. Pribylova, J. Spak and J. Havelka (2015). Partial genome sequence of currant latent virus, a new chera-like virus related to Apple latent spherical virus. J Gen Plant Pathol

 81: 142-5.

Pouwels, J., T. van der Velden, J. Willemse, J. W. Borst, J. van Lent, T. Bisseling and J. Wellink (2004). Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85: 3787-96. [PubMed]

Reddick, B. B., L. F. Habera and M. D. Law (1997). Nucleotide sequence and taxonomy of maize chlorotic dwarf virus within the family Sequiviridae. J Gen Virol 78 ( Pt 5): 1165-74. [PubMed]

Rozado-Aguirre, Z., I. Adams, L. Collins, A. Fox, M. Dickinson and N. Boonham (2016). Detection and transmission of Carrot torrado virus, a novel putative member of the Torradovirus genus. J Virol Methods 235: 119-24. [PubMed]

Sanfaçon, H. (2012). Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories. Front Plant Sci 3: 313. [PubMed]

Sanfaçon, H. (2015). Secoviridae: a family of plant picorna-like viruses with monopartite or bipartite genomes. eLS1-14.

Sanfaçon, H. (2022). Re-examination of nepovirus polyprotein cleavage sites highlights the diverse specificities and evolutionary relationships of nepovirus 3C-like proteases. Arch Virol,"10.1007/s00705-022-05564-x" 10.1007/s00705-022-05564-x. [PubMed]

Sanfaçon, H., I. Dasgupta, M. Fuchs, A. V. Karasev, K. Petrzik, J. R. Thompson, I. Tzanetakis, R. van der Vlugt, T. Wetzel and N. Yoshikawa (2020). Proposed revision of the family Secoviridae taxonomy to create three subgenera, "Satsumavirus", "Stramovirus" and "Cholivirus", in the genus Sadwavirus. Arch Virol 165: 527-33. [PubMed]

Sanfaçon, H., J. Wellink, O. Le Gall, A. Karasev, R. van der Vlugt and T. Wetzel (2009). Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154: 899-907. [PubMed]

Schellenberger, P., C. Sauter, B. Lorber, P. Bron, S. Trapani, M. Bergdoll, A. Marmonier, C. Schmitt-Keichinger, O. Lemaire, G. Demangeat and C. Ritzenthaler (2011). Structural insights into viral determinants of nematode mediated Grapevine fanleaf virus transmission. PLoS Pathog 7: e1002034. [PubMed]

Sorrentino, R., A. De Stradis, M. Russo, D. Alioto and L. Rubino (2013). Characterization of a putative novel nepovirus from Aeonium sp. Virus Res 177: 217-21. [PubMed]

Stewart, L. R. (2011). Waikaviruses: Studied but not understood. APS Features.

Stewart, L. R. (2021). Sequiviruses and waikaviruses (Secoviridae). In Encyclopedia of Virology (Fourth Edition), pp. 703-11. Edited by D. H. Bamford & M. Zuckerman: Elsevier.

Susi, P. (2004). Black currant reversion virus, a mite-transmitted nepovirus. Mol Plant Pathol 5: 167-73. [PubMed]

Thole, V. and R. Hull (1996). Rice tungro spherical virus: nucleotide sequence of the 3ʹgenomic half and studies on the two small 3ʹ open reading frames. Virus Genes 13: 239-46. [PubMed]

Thole, V. and R. Hull (1998). Rice tungro spherical virus polyprotein processing: identification of a virus-encoded protease and mutational analysis of putative cleavage sites. Virology 247: 106-14. [PubMed]

Thompson, J. R. (2020). Secoviruses (Secoviridae). In Encyclopedia of Virology, 4th Edition, pp. 692-702. Edited by D. Bamford & M. Zuckerman. Oxford: Elsevier.

Thompson, J. R., N. Kamath and K. L. Perry (2014). An evolutionary analysis of the Secoviridae family of viruses. PLoS One 9: e106305. [PubMed]

Turnbull-Ross, A. D., B. Reavy, M. A. Mayo and A. F. Murant (1992). The nucleotide sequence of parsnip yellow fleck virus: a plant picorna-like virus. J Gen Virol 73 ( Pt 12): 3203-11. [PubMed]

van der Vlugt, R. A., M. Verbeek, A. M. Dullemans, W. M. Wintermantel, W. J. Cuellar, A. Fox and J. R. Thompson (2015). Torradoviruses. Annu Rev Phytopathol 53: 485-512. [PubMed]

Verbeek, M., A. M. Dullemans, J. F. van den Heuvel, P. C. Maris and R. A. van der Vlugt (2007). Identification and characterisation of tomato torrado virus, a new plant picorna-like virus from tomato. Arch Virol 152: 881-90. [PubMed]

Walker, M., J. Chisholm, T. Wei, B. Ghoshal, H. Saeed, M. Rott and H. Sanfaçon (2015). Complete genome sequence of three tomato ringspot virus isolates: evidence for reassortment and recombination. Arch Virol 160: 543-7. [PubMed]

Wang, A. and H. Sanfaçon (2000). Proteolytic processing at a novel cleavage site in the N-terminal region of the tomato ringspot nepovirus RNA-1-encoded polyprotein in vitro. J Gen Virol 81: 2771-81. [PubMed]

Wellink, J. and A. van Kammen (1988). Proteases involved in the processing of viral polyproteins. Brief review. Arch Virol 98: 1-26. [PubMed]

Wellink, J. and A. Van Kammen (1989). Cell-to-Cell Transport of Cowpea Mosaic-Virus Requires Both the 58k/48k Proteins and the Capsid Proteins.  70: 2279-86.

Wetzel, T., J. Chisholm, A. Bassler and H. Sanfaçon (2008). Characterization of proteinase cleavage sites in the N-terminal region of the RNA1-encoded polyprotein from Arabis mosaic virus (subgroup A nepovirus). Virology 375: 159-69. [PubMed]

Yaegashi, H., T. Yamatsuta, T. Takahashi, C. Li, M. Isogai, T. Kobori, S. Ohki and N. Yoshikawa (2007). Characterization of virus-induced gene silencing in tobacco plants infected with apple latent spherical virus. Arch Virol 152: 1839-49. [PubMed]

Yoshikawa, N., K. Okada, K. Asamuma, K. Watanabe, A. Igarasi, C. Li and M. Isogai (2006). A movement protein and three capsid proteins are all necessary for the cell-to-cell movement of apple latent spherical cheravirus. Arch Virol 151: 837-48. [PubMed]

Zhang, G. and H. Sanfaçon (2006). Characterization of membrane association domains within the Tomato ringspot nepovirus X2 protein, an endoplasmic reticulum-targeted polytopic membrane protein. J Virol 80: 10847-57. [PubMed]