References: Inoviridae


Addy, H. S., A. Askora, T. Kawasaki, M. Fujie and T. Yamada (2012a). The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato. Phytopathology 102: 244-51. [PubMed]

Addy, H. S., A. Askora, T. Kawasaki, M. Fujie and T. Yamada (2012b). Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by ϕRSM filamentous phages. Phytopathology 102: 469-477. 

Addy, H. S., A. Askora, T. Kawasaki, M. Fujie and T. Yamada (2012c). Utilization of filamentous phage ϕRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant Dis 96: 1204-1209. [PubMed]

Ahmad, A. A., A. Askora, T. Kawasaki, M. Fujie and T. Yamada (2014). The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 5: 321. [PubMed]

Amako, K. and K. Yasunaka (1977). Ether induced morphological alteration of Pf-1 filamentous phage. Nature 267: 862-3. [PubMed]

Bille, E., J. R. Zahar, A. Perrin, S. Morelle, P. Kriz, K. A. Jolley, M. C. Maiden, C. Dervin, X. Nassif and C. R. Tinsley (2005). A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201: 1905-13. [PubMed]

Bischerour, J., C. Spangenberg and F. X. Barre (2012). Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration. EMBO J 31: 3757-67. [PubMed]

Bradley, D. E., F. A. Sirgel, J. N. Coetzee, R. W. Hedges and W. F. Coetzee (1982). Phages C-2 and J: IncC and IncJ plasmid-dependent phages, respectively. J Gen Microbiol 128: 2485-98. [PubMed]

Branston, S. D., E. C. Stanley, J. M. Ward and E. Keshavarz-Moore (2013). Determination of the survival of bacteriophage M13 from chemical and physical challenges to assist in its sustainable bioprocessing. Biotechnol Bioprocess Eng 18: 560-566. 

Campos, J., E. Martínez, Y. Izquierdo and R. Fando (2010). VEJ{phi}, a novel filamentous phage of Vibrio cholerae able to transduce the cholera toxin genes. Microbiology (Reading, England) 156: 108-115. [PubMed]

Campos, J., E. Martínez, E. Suzarte, B. L. Rodríguez, K. Marrero, Y. Silva, T. Ledón, R. del Sol and R. Fando (2003). VGJ phi, a novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTX phi. J Bacteriol 185: 5685-96. [PubMed]

Chang, B., H. Miyamoto, H. Taniguchi and S. Yoshida (2002). Isolation and genetic characterization of a novel filamentous bacteriophage, a deleted form of phage f237, from a pandemic Vibrio parahaemolyticus O4:K68 strain. Microbiol Immunol 46: 565-9. [PubMed] 

Chang, B., H. Taniguchi, H. Miyamoto and S. Yoshida (1998). Filamentous bacteriophages of Vibrio parahaemolyticus as a possible clue to genetic transmission. J Bacteriol 180: 5094-101. [PubMed] 

Click, E. M. and R. E. Webster (1998). The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. J Bacteriol 180: 1723-8. [PubMed] 

Das, B.  (2014). Mechanistic insights into filamentous phage integration in Vibrio cholerae. Front Microbiol 5: 650. [PubMed]

Day, L. A. (2012). Inoviridae. In Ninth Report of the International Committee on Taxonomy of Viruses, pp. 375-383. Edited by A. M. Q. King, M. J. Adams, E. B. Carstens & E. J. Lefkowitz. San Diego: Elsevier Academic Press.

Derbise, A. and E. Carniel (2014). YpfΦ: a filamentous phage acquired by Yersinia pestis. Front Microbiol 5: 701. [PubMed]

Ehara, M., S. Shimodori, F. Kojima, Y. Ichinose, T. Hirayama, M. J. Albert, K. Supawat, Y. Honma, M. Iwanaga and K. Amako (1997). Characterization of filamentous phages of Vibrio cholerae O139 and O1. FEMS Microbiol Lett 154: 293-301. [PubMed]

Faruque, S. M., I. Bin Naser, K. Fujihara, P. Diraphat, N. Chowdhury, M. Kamruzzaman, F. Qadri, S. Yamasaki, A. N. Ghosh and J. J. Mekalanos (2005). Genomic sequence and receptor for the Vibrio cholerae phage KSF-1phi: evolutionary divergence among filamentous vibriophages mediating lateral gene transfer. J Bacteriol 187: 4095-103. [PubMed]

Faruque, S. M. and J. J. Mekalanos (2012). Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3: 556-65. [PubMed]

Fasano, A., B. Baudry, D. W. Pumplin, S. S. Wasserman, B. D. Tall, J. M. Ketley and J. B. Kaper (1991). Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc Natl Acad Sci U S A 88: 5242-6. [PubMed]

Feng, J. N., P. Model and M. Russel (1999). A trans-envelope protein complex needed for filamentous phage assembly and export. Mol Microbiol 34: 745-55. [PubMed]

Geider, K. and A. Kornberg (1974). Conversion of the M13 viral single strand to the double-stranded replicative forms by purified proteins. J Biol Chem 249: 3999-4005. [PubMed]

Goldbourt, A., L. A. Day and A. E. McDermott (2010). Intersubunit hydrophobic interactions in Pf1 filamentous phage. J Biol Chem 285: 37051-9. [PubMed]

Gonzalez, M. D., C. A. Lichtensteiger, R. Caughlan and E. R. Vimr (2002). Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar orientalis. J Bacteriol 184: 6050-5. [PubMed] 

Hagemann, M., D. Hasse and G. Berg (2006). Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Arch Microbiol 185: 449-58. [PubMed]

Hill, D. F., N. J. Short, R. N. Perham and G. B. Petersen (1991). DNA sequence of the filamentous bacteriophage Pf1. J Mol Biol 218: 349-64. [PubMed]

Honma, Y., M. Ikema, C. Toma, M. Ehara and M. Iwanaga (1997). Molecular analysis of a filamentous phage (fsl) of Vibrio cholerae O139. Biochim Biophys Acta 1362: 109-15. [PubMed]

Huber, K. E. and M. K. Waldor (2002). Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417: 656-9. [PubMed]

Ikema, M. and Y. Honma (1998). A novel filamentous phage, fs-2, of Vibrio cholerae O139. Microbiology (Reading, England) 144: 1901-6. [PubMed]

Kar, S., R. K. Ghosh, A. N. Ghosh and A. Ghosh (1996). Integration of the DNA of a novel filamentous bacteriophage VSK from Vibrio cholerae 0139 into the host chromosomal DNA. FEMS Microbiol Lett 145: 17-22. [PubMed]

Kawasaki, T., S. Nagata, A. Fujiwara, H. Satsuma, M. Fujie, S. Usami and T. Yamada (2007). Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum. J Bacteriol 189: 5792-802. [PubMed]

Knezevic, P., M. Voet and R. Lavigne (2015). Prevalence of Pf1-like (pro)phage genetic elements among Pseudomonas aeruginosa isolates. Virology 483: 64-71. [PubMed]

Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35: 1547-1549. [PubMed]

Kuo, T. T., M. S. Tan, M. T. Su and M. K. Yang (1991). Complete nucleotide sequence of filamentous phage Cf1c from Xanthomonas campestris pv. citri. Nucleic Acids Res 19: 2498. [PubMed] 

Lee, B. Y., J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh and S. W. Lee (2012). Virus-based piezoelectric energy generation. Nature nanotechnology 7: 351-6. [PubMed]

Liu, J., Q. Liu, P. Shen and Y. P. Huang (2012). Isolation and characterization of a novel filamentous phage from Stenotrophomonas maltophilia. Arch Virol 157: 1643-50. [PubMed]

Lopez, J. and R. E. Webster (1983). Morphogenesis of filamentous bacteriophage f1: orientation of extrusion and production of polyphage. Virology 127: 177-93. [PubMed]

Lorenz, S. H., R. P. Jakob, U. Weininger, J. Balbach, H. Dobbek and F. X. Schmid (2011). The filamentous phages fd and IF1 use different mechanisms to infect Escherichia coli. J Mol Biol 405: 989-1003. [PubMed]

Luiten, R. G., D. G. Putterman, J. G. Schoenmakers, R. N. Konings and L. A. Day (1985). Nucleotide sequence of the genome of Pf3, an IncP-1 plasmid-specific filamentous bacteriophage of Pseudomonas aeruginosa. J Virol 56: 268-76. [PubMed]

Marvin, D. A., R. D. Hale, C. Nave and M. Helmer-Citterich (1994). Molecular models and structural comparisons of native and mutant class I filamentous bacteriophages Ff (fd, f1, M13), If1 and IKe. J Mol Biol 235: 260-86. [PubMed] 

McLeod, S. M., H. H. Kimsey, B. M. Davis and M. K. Waldor (2005). CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol Microbiol 57: 347-56. [PubMed]

Meyer, T. F., K. Geider, C. Kurz and H. Schaller (1979). Cleavage site of bacteriophage fd gene II-protein in the origin of viral strand replication. Nature 278: 365-7. [PubMed]

Murugaiyan, S., J. Y. Bae, J. Wu, S. D. Lee, H. Y. Um, H. K. Choi, E. Chung, J. H. Lee and S. W. Lee (2011). Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strains. J Appl Microbiol 110: 296-303. [PubMed] 

Nasu, H., T. Iida, T. Sugahara, Y. Yamaichi, K. S. Park, K. Yokoyama, K. Makino, H. Shinagawa and T. Honda (2000). A filamentous phage associated with recent pandemic Vibrio parahaemolyticus O3:K6 strains. J Clin Microbiol 38: 2156-61. [PubMed]

Newman, J., L. A. Day, G. W. Dalack and D. Eden (1982). Hydrodynamic determination of molecular weight, dimensions, and structural parameters of Pf3 virus. Biochemistry 21: 3352-8. [PubMed] 

Nguyen, D. T., T. C. Ngo, H. H. Tran, T. H. Le, H. T. Nguyen, B. M. Nguyen, N. D. Tran, T. Yamashiro and M. Ehara (2012). Characterization of Vibrio cholerae O139 of an aquatic isolate in Northern Vietnam. Open Microbiol J 6: 14-21. [PubMed] 

Nguyen, D. T., B. M. Nguyen, H. H. Tran, T. C. Ngo, T. H. Le, H. T. Nguyen, M. J. Albert, M. Iwami and M. Ehara (2008). Filamentous vibriophage fs2 encoding the rstC gene integrates into the same chromosomal region as the CTX phage [corrected" target="ictvref">PubMed]. FEMS Microbiol Lett 284: 225-30. [PubMed] 

Oh, J. S., D. R. Davies, J. D. Lawson, G. E. Arnold and A. K. Dunker (1999). Isolation of chloroform-resistant mutants of filamentous phage: localization in models of phage structure. J Mol Biol 287: 449-57. [PubMed]

Olofsson, L., J. Ankarloo, P. O. Andersson and I. A. Nicholls (2001). Filamentous bacteriophage stability in non-aqueous media. Chem Biol 8: 661-71. [PubMed]

Peeters, B. P., R. M. Peters, J. G. Schoenmakers and R. N. Konings (1985). Nucleotide sequence and genetic organization of the genome of the N-specific filamentous bacteriophage IKe. Comparison with the genome of the F-specific filamentous phages M13, fd and f1. J Mol Biol 181: 27-39. [PubMed] 

Petrova, M., N. Shcherbatova, A. Kurakov and S. Mindlin (2014). Genomic characterization and integrative properties of phiSMA6 and phiSMA7, two novel filamentous bacteriophages of Stenotrophomonas maltophilia. Arch Virol 159: 1293-303. [PubMed] 

Rasched, I. and E. Oberer (1986). Ff coliphages: structural and functional relationships. Microbiol Rev 50: 401-27. [PubMed] 

Roux, S., M. Krupovic, R. A. Daly, A. L. Borges, S. Nayfach, F. Schulz, A. Sharrar, P. B. Matheus Carnevali, J. F. Cheng, N. N. Ivanova, J. Bondy-Denomy, K. C. Wrighton, T. Woyke, A. Visel, N. C. Kyrpides and E. A. Eloe-Fadrosh (2019). Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth's biomes. Nat Microbiol 4: 1895-1906. [PubMed] 

Specthrie, L., E. Bullitt, K. Horiuchi, P. Model, M. Russel and L. Makowski (1992). Construction of a microphage variant of filamentous bacteriophage. J Mol Biol 228: 720-4. [PubMed]

Stassen, A. P., E. F. Schoenmakers, M. Yu, J. G. Schoenmakers and R. N. Konings (1992). Nucleotide sequence of the genome of the filamentous bacteriophage I2-2: module evolution of the filamentous phage genome. J Mol Evol 34: 141-52. [PubMed]

Stecher, G., K. Tamura and S. Kumar (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol 37: 1237-1239. [PubMed]

Taniguchi, H., K. Sato, M. Ogawa, T. Udou and Y. Mizuguchi (1984). Isolation and characterization of a filamentous phage, Vf33, specific for Vibrio parahaemolyticus. Microbiol Immunol 28: 327-37. [PubMed]

Trucksis, M., J. E. Galen, J. Michalski, A. Fasano and J. B. Kaper (1993). Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci U S A 90: 5267-71. [PubMed]

Van, T. T., S. Yoshida, K. Miki, A. Kondo and K. Kamei (2014). Genomic characterization of ϕRS603, a filamentous bacteriophage that is infectious to the phytopathogen Ralstonia solanacearum. Microbiol Immunol 58: 697-700. [PubMed]

Waldor, M. K. and J. J. Mekalanos (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910-4. [PubMed]

Waldor, M. K., E. J. Rubin, G. D. Pearson, H. Kimsey and J. J. Mekalanos (1997). Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol 24: 917-26. [PubMed]

Wang, Q., B. Kan and R. Wang (2013). Isolation and characterization of the new mosaic filamentous phage VFJ Φ of Vibrio cholerae. PLoS One 8: e70934. [PubMed]

Webb, J. S., M. Lau and S. Kjelleberg (2004). Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186: 8066-73. [PubMed]

Whelan, S. and N. Goldman (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18: 691-699. [PubMed]

Xue, H., Y. Xu, Y. Boucher and M. F. Polz (2012). High frequency of a novel filamentous phage, VCY φ, within an environmental Vibrio cholerae population. Appl Environ Microbiol 78: 28-33. [PubMed] 

Yamada, T.  (2013). Filamentous phages of Ralstonia solanacearum: double-edged swords for pathogenic bacteria. Front Microbiol 4: 325. [PubMed]

Yamada, T., T. Kawasaki, S. Nagata, A. Fujiwara, S. Usami and M. Fujie (2007). New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology (Reading, England) 153: 2630-2639. [PubMed]

Yeh, T. Y.  (2017). Complete nucleotide sequence of a new filamentous phage, Xf109, which integrates its genome into the chromosomal DNA of Xanthomonas oryzae. Arch Virol 162: 567-572. [PubMed]

Yu, Z. C., X. L. Chen, Q. T. Shen, D. L. Zhao, B. L. Tang, H. N. Su, Z. Y. Wu, Q. L. Qin, B. B. Xie, X. Y. Zhang, Y. Yu, B. C. Zhou, B. Chen and Y. Z. Zhang (2015). Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice. ISME J 9: 871-81. [PubMed]