References: Asfarviridae

 

Afonso, C. L., Piccone, M. E., Zaffuto, K. M., Neilan, J., Kutish, G. F., Lu, Z., Balinsky, C. A., Gibb, T. R., Bean, T. J., Zsak, L. & Rock, D. L. (2004).  African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol 78, 1858-1864. [PubMed]

Alonso, C., Miskin, J., Hernaez, B., Fernandez-Zapatero, P., Soto, L., Canto, C., Rodriguez-Crespo, I., Dixon, L. & Escribano, J. M. (2001).  African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75, 9819-9827. [PubMed]

Andreani, J., Khalil, J. Y. B., Sevvana, M., Benamar, S., Di Pinto, F., Bitam, I., Colson, P., Klose, T., Rossmann, M. G., Raoult, D. & La Scola, B. (2017).  Pacmanvirus, a new giant icosahedral virus at the crossroads between Asfarviridae and Faustoviruses. J Virol 91, e00212-00217. [PubMed]

Argilaguet, J. M., Pérez-Martin, E., Nofrarías, M., Gallardo, C., Accensi, F., Lacasta, A., Mora, M., Ballester, M., Galindo-Cardiel, I., López-Soria, S., Escribano, J. M., Reche, P. A. & Rodríguez, F. (2012).  DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One 7, e40942. [PubMed]

Arias, M., de la Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C., Parkhouse, R. M., Revilla, Y. & Rodriguez, F. A. J. (2017).  Approaches and Perspectives for Development of African Swine Fever Virus Vaccines. Vaccines 5, 35. [PubMed

Bajrai, L. H., Benamar, S., Azhar, E. I., Robert, C., Levasseur, A., Raoult, D. & La Scola, B. (2016).  Kaumoebavirus, a new virus that clusters with Faustoviruses and Asfarviridae. Viruses 8, 278. [PubMed]

Barrado-Gil, L., Galindo, I., Martinez-Alonso, D., Viedma, S. & Alonso, C. (2017).  The ubiquitin-proteasome system is required for African swine fever replication. PLoS One 12, e0189741. [PubMed

Bastos, A. D., Penrith, M. L., Crucière, C., Edrich, J. L., Hutchings, G., Roger, F., Couacy-Hymann, E. & R., T. G. (2003).  Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch Virol 148, 693-706. [PubMed

Blome, S., Gabriel, C. & Beer, M. (2014).  Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 32, 3879-3882. [PubMed]

Chapman, D. A., Darby, A. C., Da Silva, M., Upton, C., Radford, A. D. & Dixon, L. K. (2011).  Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg Infect Dis 17, 599-605. [PubMed]

Chapman, D. A., Tcherepanov, V., Upton, C. & Dixon, L. K. (2008).  Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 89, 397-408. [PubMed]

Cobbold, C., Windsor, M. & Wileman, T. (2001).  A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75, 7221-7229. [PubMed

Cuesta-Geijo, M. A., Chiappi, M., Galindo, I., Barrado-Gil, L., Muñoz-Moreno, R., Carrascosa, J. L. & Alonso, C. (2015).  Cholesterol flux is required for endosomal progression of African swine fever virions during the initial establishment of infection. J Virol 90, 1534-1543. [PubMed]

Cuesta-Geijo, M. A., Galindo, I., Hernáez, B., Quetglas, J. I., Dalmau-Mena, I. & Alonso, C. (2012).  Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS One 7, e48853. [PubMed]

de Villiers, E. P., Gallardo, C., Arias, M., da Silva, M., Upton, C., Martin, R. & Bishop, R. P. (2010).  Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology 400, 128-136. [PubMed]

Dixon, L. K., Chapman, D. A., Netherton, C. L. & Upton, C. (2013).  African swine fever virus replication and genomics. Virus Res 173, 3-14. [PubMed]

Escribano, J. M., Galindo, I. & Alonso, C. (2013).  Antibody-mediated neutralization of African swine fever virus: myths and facts. Virus Res 173, 101-109. [PubMed]

Galindo, I. & Alonso, C. (2017).  African swine fever virus: a review. Viruses 9, 103. [PubMed]

Galindo, I., Hernaez, B., Diaz-Gil, G., Escribano, J. M. & Alonso, C. (2008).  A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 375, 561-572. [PubMed]

Galindo, I., Hernáez, B., Muñoz-Moreno, R., Cuesta-Geijo, M. A., Dalmau-Mena, I. & Alonso, C. (2012).  The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death & Disease 3, e341. [PubMed]

Gómez-Puertas, P., Oviedo, J. M., Rodriguez, F., Coll, J. & Escribano, J. M. (1997).  Neutralization susceptibility of African swine fever virus is dependent on the phospholipid composition of viral particles. Virology 228, 180-189. [PubMed]

Gómez-Puertas, P., Rodriguez, F., Oviedo, J. M., Brun, A., Alonso, C. & Escribano, J. M. (1998).  The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243, 461-471. [PubMed]

Granja, A. G., Perkins, N. D. & Revilla, Y. (2008).  A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino-terminal transactivation domain of p300. J Immunol 180, 2429-2442. [PubMed]

Hawes, P. C., Netherton, C. L., Wileman, T. E. & Monaghan, P. (2008).  The envelope of intracellular African swine fever virus is composed of a single lipid bilayer. J Virol 82, 7905-7912. [PubMed]

Hernáez, B., Cabezas, M., Muñoz-Moreno, R., Galindo, I., Cuesta-Geijo, M. A. & Alonso, C. (2013).  A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Curr Mol Med 13, 305-316. [PubMed]

Hernáez, B., Guerra, M., Salas, M. L. & Andrés, G. (2016).  African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes. PLoS Pathog 12, e1005595. [PubMed]

Hernaez, B., Tarrago, T., Giralt, E., Escribano, J. M. & Alonso, C. (2010).  Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. J Virol 84, 10792-10801. [PubMed]

Jouvenet, N., Monaghan, P., Way, M. & Wileman, T. (2004).  Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J Virol 78, 7990-8001. [PubMed]

Klose, T., Reteno, D. G., Benamar, S., Hollerbach, A., Colson, P., La Scola, B. & Rossmann, M. G. (2016).  Structure of faustovirus, a large dsDNA virus. Proc Natl Acad Sci USA 113, 6206-6211. [PubMed]

Lacasta, A., Ballester, M., Monteagudo, P. L., Rodríguez, J. M., Salas, M. L., Accensi, F., Pina-Pedrero, S., Bensaid, A., Argilaguet, J., López-Soria, S., Hutet, E., Le Potier, M. F. & Rodríguez, F. (2014).  Expression library immunization can confer protection against lethal challenge with African swine fever virus. J Virol 88, 13322-13332. [PubMed

Loh, J., Zhao, G., Presti, R. M., Holtz, L. R., Finkbeiner, S. R., Droit, L., Villasana, Z., Todd, C., Pipas, J. M., Calgua, B., Girones, R., Wang, D. & Virgin, H. W. (2009).  Detection of novel sequences related to African Swine Fever virus in human serum and sewage. J Virol 83, 13019-13025. [PubMed]

Miskin, J. E., Abrams, C. C., Goatley, L. C. & Dixon, L. K. (1998).  A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562-565. [PubMed]

Monteagudo, P. L., Lacasta, A., López, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa-Fiz, F., Accensi, F., Navas, M. J., Vidal, E., Bustos, M. J., Rodríguez, J. M., Gallei, A., Nikolin, V., Salas, M. L. & Rodríguez, F. (2017).  BA71DeltaCD2: a New Recombinant Live Attenuated African Swine Fever Virus with Cross-Protective Capabilities. J Virol 91, e01058-01017. [PubMed]

O'Donnell, V., Holinka, L. G., Gladue, D. P., Sanford, B., Krug, P. W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G. R. & Borca, M. V. (2015).  African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. J Virol 89, 6048-6056. [PubMed]

O'Donnell, V., Risatti, G. R., Holinka, L. G., Krug, P. W., Carlson, J., Velazquez-Salinas, L., Azzinaro, P. A., Gladue, D. P. & Borca, M. V. (2017).  Simultaneous Deletion of the 9GL and UK Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge. J Virol 91, e01760-01716. [PubMed]

Olesen, A. S., Lohse, L., Boklund, A., Halasa, T., Gallardo, C., Pejsak, Z., Belsham, G. J., Rasmussen, T. B. & Bøtner, A. (2017).  Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes. Vet Microbiol 211, 92-102. [PubMed]

Onisk, D. V., Borca, M. V., Kutish, G., Kramer, E., Irusta, P. & Rock, D. L. (1994).  Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology 198, 350-354. [PubMed]

Oura, C. A., Denyer, M. S., Takamatsu, H. & Parkhouse, R. M. (2005).  In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol 86, 2445-2450. [PubMed]

Parrish, S., Hurchalla, M., Liu, S. W. & Moss, B. (2009).  The African swine fever virus g5R protein possesses mRNA decapping activity. Virology 393, 177-182. [PubMed]

Portugal, R., Coelho, J., Höper, D., Little, N. S., Smithson, C., Upton, C., Martins, C., Leitão, A. & Keil, G. M. (2015).  Related strains of African swine fever virus with different virulence: genome comparison and analysis. J Gen Virol 96, 408-419. [PubMed]

Quintas, A., Pérez-Núñez, D., Sánchez, E. G., Nogal, M. L., Hentze, M. W., Castelló, A. & Revilla, Y. (2017).  Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. J Virol 91, e00990-00917. [PubMed]

Reis, A. L., Goatley, L. C., Jabbar, T., Sanchez-Cordon, P. J., Netherton, C. L., Chapman, D. A. G. & Dixon, L. K. (2017).  Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J Virol 91, e01428-01417. [PubMed

Reteno, D. G., Benamar, S., Khalil, J. B., Andreani, J., Armstrong, N., Klose, T., Rossmann, M., Colson, P., Raoult, D. & La Scola, B. (2015).  Faustovirus, an asfarvirus-related new lineage of giant viruses infecting amoebae. J Virol 89, 6585-6594. [PubMed]

Rivera, J., Abrams, C., Hernáez, B., Alcázar, A., Escribano, J. M., Dixon, L. & Alonso, C. (2007).  The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. J Virol 81, 2923-2929. [PubMed

Ruíz-Gonzalvo, F., Rodríguez, F. & Escribano, J. M. (1996).  Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 218, 285-289. [PubMed]

Salas, M. L. & Andrés, G. (2013).  African swine fever virus morphogenesis. Virus Res 173, 29-41. [PubMed]

Sánchez-Cordón, P. J., Jabbar, T., Berrezaie, M., Chapman, D., Reis, A., Sastre, P., Rueda, P., Goatley, L. & Dixon, L. K. (2017).  Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninDeltaMGF by different doses and routes. Vaccine, 707-715. [PubMed]

Suarez, C., Salas, M. L. & Rodriguez, J. M. (2010).  African swine fever virus polyprotein pp62 is essential for viral core development. J Virol 84, 176-187. [PubMed]

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013).  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725-2729. [PubMed]

Temmam, S., Monteil-Bouchard, S., Sambou, M., Aubadie-Ladrix, M., Azza, S., Decloquement, P., Khalil, J. Y., Baudoin, J. P., Jardot, P., Robert, C., La Scola, B., Mediannikov, O. Y., Raoult, D. & Desnues, C. (2015).  Faustovirus-like asfarvirus in hematophagous biting midges and their vertebrate hosts. Front Microbiol 6, 1406. [PubMed]

Wan, X. F., Barnett, J. L., Cunningham, F., Chen, S., Yang, G., Nash, S., Long, L. P., Ford, L., Blackmon, S., Zhang, Y., Hanson, L. & He, Q. (2013).  Detection of African swine fever virus-like sequences in ponds in the Mississippi Delta through metagenomic sequencing. Virus Genes 46, 441-446. [PubMed]

Zhang, F., Moon, A., Childs, K., Goodbourn, S. & Dixon, L. K. (2010).  The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J Virol 84, 10681-10689. [PubMed]