Challenges in classifying newly discovered viruses (cf. giant viruses)

Jean-Michel.Claverie@univ-amu.fr

Structural & Genomic Information Laboratory (IGS)
Mediterranean Institute of Microbiology (IMM)

CNRS - Aix-Marseille University

3 short stories

- 1- Handling the unknow (dark matter)
- 2- Issues with attempted deep taxonomy
- 3- Dubious classifications in Phycodnaviridae & Mimiviridae

Different sizes, morphologies, genomes

Viruses have nothing in common, except the way they propagate their genomes

93% ORFans: guess what that is!

Going back to the basics: A. Lwoff (how to discriminate cellular organisms from viruses)

Viruses are defined by negative properties:

- 1) Not visible by light microscopy
- 2) Not retained by the Chamberland filter
- 3) Not cultivable
- 4) No energy production
- 5) No translation (no ribosome)
- 6) No division

Lwoff A. (1957). The concept of virus. *Journal General Microbiology 17*, 239–253. Lwoff A, Tournier P (1966). The classification of viruses. *Annual Reviews Microbiology 20*, 45–74.

The (formally) required experimental evidence (how to discriminate cellular organisms from viruses)

Viruses are defined by negative properties:

- 1) Not visible by light microscopy
- 2) Not retained by the Chamberland filter
- 3) Not cultivable (cell dependent) -> observation
- 4) No energy production → whole genome
- 5) No translation (no ribosome) -> whole genome
- 6) No division → observation

Documenting a new « life form »

← Intracellular (Acanthamoeba) replication

Pandoravirus salinus: 2.8 Mb, 62%GC, 2556 CDS, 3 tRNA

- No ribosomal protein
- No division apparatus (FtsZ)
 - No ATP production pathways
- This must be a virus

 But: No trace of Major Capsid Protein

Genetic code? -> Proteomic validation

Particle proteomics

MS-MS spectrometry (Y. Couté, C. Bruley, J. Garin, Grenoble)

1- Conclusion

- 1- « If the material is not available, this is not Science » (dixit George Garrity)
- 2- Nomenclature rules should hold to the challenge of future totally unexpected discoveries (rigorous AND flexible)
- 3- Criteria, methods, and and level of required evidence probably cannot be the same for all virus families

2- Issues with deep taxonomy attemps

Yutin and Koonin Biology Direct 2013, 8:25 http://www.biologydirect.com/content/8/1/25

DISCOVERY NOTES

Open Access

Pandoraviruses are highly derived phycodnaviruses

Natalya Yutin and Eugene V Koonin*

Are trees reliable? (below 30% ID)

DNA polymerase

Best matches: Mimiviridae (31% /40%)
No EhV among the top 100 matches

Best matches: **Mollivirus** & Prasinovirus (30% /50%), no EhV among the top 50

Inconsistency between most similar sequences and their branching pattern (long branch attraction)?

Protein-dependent « functional threshold » of similarity below which phylogenetic signals are erased (random branching)?

Initial results (2013)

- 16 other « NCLDV core genes » homologs
 - 11 best matches are in cellular organisms?
 (strange for « viral » core genes)
 - 5 viral matches: in Prasinoviruses (2), Phaeovirus (1),
 Coccolithovirus (1), and Marseillevirus (1)
- Classifying Pandoravirus on the basis of 5 remote homologs of « viral core genes » (over >2500 ORFs) ?

Before / After

Table 1 The ancestral	NCLDV gen	es represented in	Pandoraviruses
-----------------------	-----------	-------------------	-----------------------

	Gene/NCVOG	P. dulcis genes	P. salinus genes	Presence in the 7 NCLDV families ^a	Best hit for Pandoraviruses / % identity/alignment length	
Ì						
	D5-like helicase-primase/NCVOG0023	516302795	516304338		Bathycoccus sp. RCC1105 virus BpV2 (Phycodnaviridae) /33/579	

516304338: 37% ID over 60%, score [314-306]: Yellow Stone LV, Bathicoccus BpV2V

DNA or RNA helicases of superfamily II (COG1061) (A18hel)/NCVOG0076

516302732

516304266

5

Ectocarpus siliculosus virus 1 (Phycodnaviridae) /35/238

516304266: 35% ID over 28%, score [164-136]: Mollivirus, Esv-1

A32-like packaging ATPase/NCVOG0249

516302762, 516303626 **516306303,** 516303793, 516305958, 516303807, 516305953

7

Ostreococcus tauri virus 2 (Phycodnaviridae) /45/247

516306303: 44% ID over 55%, score [224-211]: Yellow Stone LV, all prasinoviruses

516303793: 31% ID over 70%, score [117-106]: Yellow Stone LV, small Megaviridae

516305958: 38% ID over 59%, score [185-171]: Yellow Stone LV, all prasinoviruses

516303807: 29% ID over 67%, score [117-102]: Yellow Stone LV, all prasinoviruses

516305953: no match, no A32-like domain?

Before / After

:	able 1 The ancestral NCLDV genes represented in Pandoraviruses						
	Gene/NCVOG	P. dulcis genes	P. salinus genes	Presence in the 7 NCLDV families ^a	Best hit for Pandoraviruses ^b / % identity/alignment length		
ŀ			*******************				
	pfam04947, Poxvirus Late Transcription Factor VLTF3 like (A2L)/NCVOG0262	516302769, 516303263	516304304, 516305311	7	Emiliania huxleyi virus 202 (Phycodnaviridae) /34/264		

516304304: 35% ID over 33%, score [134-125]: EhV202, Mollivirus, EsV-1, Chlorovirus, no other EhV

516305311: 35% ID over 53%, score [102-99]: ACTV Br0604L, Guilliardia Theta, Chloroviruses

cd00127, DSPc, Dual specificity phosphatases (DSP); Ser/Thr and Tyr protein phosphatases/NCVOG0040 516303124, 516303141 **516304931,** 516304951

3

Lausannevirus (Marseillevirus family) /41/149

516304931: 43% ID over 80%, score [120-111]: Mollivirus, Marseilleviridae 516304951: 51% ID over 84%, score [127-108: Mollivirus, Marseilleviridae

5 viral matches: Yellow Stone Virus (2) Prasinoviruses (2), Mollivirus (2) Phaeovirus (1), Marseillevirus (1), Coccolithovirus (1)

All these « best-matching » cases are fluctuating, borderline, and compatible with

- old HGTs from ancestors of known viruses
- recent HGTs from unknown viruses from known families
- all scenarios in between

RNA polymerases?

516306301 (RPB1): 37% ID over 26%, score [323-224]: various Fungi, Eukaryota, No virus

531037321 (RPB2): 37% ID over 85%, score [718-467] Encephalitozoon cuniculi, Eukaryota, No virus

Pandoraviruses are most likely unrelated to « phycodnaviruses »

This paper has the merit of raising 4 essential questions:

- The danger of classifying new viruses on the basis of a predetermined reference gene set
 - « ad hoc » selection of genes $(C_{(5,40)} = 6.58 \cdot 10^5)$
- Status of homologous/orthologous genes unclear (domain sharing, random matching, HGT)
 - HGT and non-orthologous replacements are impossible to dismiss
- 3) First members of new families might be at risk of being classified on the basis of the minority of genes acquired by HGT (cladistics!)
- 4) Lack of clear rules by which to classify viruses in existing families (groups): total % shared gene, similarity threshold among a family-based reference gene set, virion morphology, replication scenario, host, disease type, etc.

Additional remarkss

- «Core» genes are not «sacred» one-copy genes: duplicated RPB, Packaging ATPases, etc ...
 facilitating «core» gene exchanges
- Homology to « ancestral » core genes does not imply that they are « ancestral » in a given virus genome
- Significant similarity can be reached by chance (+ Bonferroni correction)

Known duplications of NCLDV «core genes»

- DNA-dependent RNA Pol second largest subunit (Rpb2):
 - PgV, CeV, OLPV, AaV
- Packaging ATPase (VV32-like):
 - PgV, OLPV
- Ribonucleotide Reductase (small sub.):
 - CeV
- DNA-dependent RNA Pol largest subunit (Rpb1):
 - AaV (AaV_242, AaV_320) (Aureococcus anophagefferens virus)

Proper and misleading use of the reciprocal best match rule (RBM)

Misleading use of the reciprocal best match rule (RBM)

Statistics of best BLAST hits between *P. salinus* and shuffled EhV86

36 < hits (RBM) <84 For each individual run!

3- Dubious classification in «Phycodnaviridae»& Mega/Mimiviridae

Family level: present status

(recognized/listed by ICTV)

Phycodnaviridae

- Chlorovirus (PBCV-1, 1995)
- Coccolithovirus (EhV86, 2005)
- Phaeovirus (EsV-1, 2001)
- Prasinovirus (MpV-1, 2010)
- Prymnesiovirus (PgV 16T, 2013)
- Raphidovirus (3 genes, Heterosigma akashiwo virus 1)

Mimiviridae

- Cafeteriavirus (CroV, 2010)
- Mimivirus (APMV, 2003)

Phycodnaviridae: present status at NCBI

Viral complete genome browser

Mimiviridae: present status at NCBI Viral complete genome browser

Mimiviridae		
Acanthamoeba polyphaga mimivirus	1181549 nt	NC_014649
Acanthamoeba polyphaga moumouvirus	1021348 nt	NC_020104
Cafeteria roenbergensis virus BV-PW1	617453 nt	NC_014637
Megavirus chiliensis	1259197 nt	NC_016072
Megavirus Iba	1230522 nt	NC_020232
Megavirus terra1	1244621 nt	NC_023640
Mimivirus terra2	1168989 nt	NC_023639
Yellowstone lake mimivirus	73689 nt	NC_028104

Partial "complete" metagenomes

LOCUS NC_028108 171454 bp DNA linear VRL 30-OCT-2015

DEFINITION Yellowstone lake phycodnavirus 3, complete genome, isolate: 3

-> Not a single polymerase (RNA or DNA!)

LOCUS NC_028104 **73689 bp** DNA linear VRL 30-OCT-2015
DEFINITION **Yellowstone lake mimivirus**, **complete genome**, isolate: 1 ???
-> No DNA polymerase nor RNA polymerase ?

Zhang, W., Zhou, J., Liu, T., Yu, Y., Pan, Y., Yan, S. and Wang, Y. (2015)
Four novel algal virus genomes discovered from Yellowstone Lake metagenomes
Sci Rep 5, 15131, PUBMED 26459929

Unannotated "complete" genome

LOCUS NC_023640 1244621 bp DNA linear VRL 06-MAR-2014 DEFINITION Megavirus terra1 genome.

LOCUS NC_023639 1168989 bp DNA linear VRL 06-MAR-2014 DEFINITION Mimivirus terra2 genome.

Not a single annotation?

Fully annotated Mimiviridae complete genomes in *Genbank* but not listed in « viral genomes »?

LOCUS JX975216 1246126 bp DNA linear VRL 16-APR-2014 DEFINITION Megavirus courdo11, complete genome.

LOCUS KF493731 1181042 bp DNA linear VRL 20-NOV-2013 DEFINITION Hirudovirus strain Sangsue, complete genome

LOCUS NC_020104 1021348 bp DNA linear VRL 11-JAN-2013 DEFINITION *Ac. polyphaga* moumouvirus, complete genome.

A job for ICTV: Phycodnaviridae/Mimiviridae

Three main problems:

- One family embedded in another one
- Genera as distant from each other as different families
- Nomenclature associated to an unwarranted host range

Five equidistant clades:

Mega/mimiviridae

Coccolithoviruses

Chloroviruses

Prasinoviruses

Phaeoviruses

Global features

Virus	Genome	Virion	RNA pol	DNA pol	DNA pol	MutS7	GC%
	Size (kb)	Ø (nm)		size	Intein		
Chloroviruses	288-368	190	-	≅900	-	-	40%
Prasinoviruses	182-196	125	-	≅900	-	-	45-48%
Phaeoviruses	154-335	120-150	-	≅1,000	-	-	53%
Coccolithoviruses	405	175	+	≅1,000	-	-	40%
Sm_Mimiviridae	370-474	150-300	+	≅1,600	+/-	+	32%
Mimiviridae	730-1,26	300-700	+	≅1,700	+	+	26-30%

%ID DNA Polymerase B

DNA PolB % ID	Chlorovirus	Prasinovirus	Phaeovirus	Coccolithovirus	SmMimiviridae	Mimiviridae
Chlorovirus	>71	<40	<32	<33	<33	<24
Prasinovirus	<40	>73	<32	<37	<29	<31
Phaeovirus	<32	<32	>44	<34	-	-
Coccolithovirus	<33	<37	<34	>92	<33	-
SmMimiviridae	<33	<29	-	<33	>45	>41
Mimiviridae	<24	<31	-	-	>41	>65

>44% ID is presently the divergence limit within each of these clades

Possible ways out (to discuss among SGs)

- 1) Stop using Phycodnaviridae as a «family» name
- 2) Create 2-3 subfamilies within Megaviridae
 - Mimivirinae -> large ones
 - Unclassified Megaviridae for others (pending more)

3) Upgrade

- Chloro-, Phaeo-, Prasino-, Coccolitho-virus as families ?
- However using «host names» might become misleading (beware of future host specificities)

Other viral taxonomy problems

- Which objective criteria for families?
- What minimum knowledge is required?
- Which genes (if any) to use as references?

Closing remarks: "real" vs. "virtual" viruses

"Artificially created viruses and laboratory hybrid viruses will not be given taxonomic consideration. Their classification will be the responsibility of acknowledged international specialist groups"

- 1) What about metagenomic assembly?
- 2) What about incomplete genomes
- 3) What about isolated genes?

Should we name and classify viruses that have never been seen and/or isolated?

The lack of a coherent policy makes « manual » data mining a nightmare and automated data mining impossible

Dr. Chantal Abergel