

This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document "Help with completing a taxonomic proposal"

Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example.

MODULE 1: TITLE, AUTHORS, etc

Code assigned:	2016.001a-agF	(to be completed by ICTV officers)				
Short title: Establishing eight new genera and seventy three species in the family <i>Genomoviridae</i> (e.g. 6 new species in the genus <i>Zetavirus</i>)						
Modules attached (modules 1 and 11 are required)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Author(s):

Mart Krupovic and Arvind Varsani

Corresponding author with e-mail address:

mart.krupovic@pasteur.fr; avarsani@gmail.com

List the ICTV study group(s) that have seen this proposal:

A list of study groups and contacts is provided at <u>http://www.ictvonline.org/subcommittees.asp</u>. If in doubt, contact the appropriate subcommittee chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses)

ICTV Study Group comments (if any) and response of the proposer:

Date first submitted to ICTV: Date of this revision (if different to above): July 2016

ICTV-EC comments and response of the proposer:

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code	201	6.001aF		(assigned by IC	TV offic	ers)	
To crea	1	new species within	:	J			
		••••			Fill i	n all that apply.	
Genus: Gemycircularvirus					he higher taxon has yet to be		
		Gemycircularviri	15			eated (in a later module, below) write	
	amily:					ew)" after its proposed name.	
Fa	amily:	Genomoviridae				no genus is specified, enter	
(Order:		1			nassigned" in the genus box.	
Name o	of new	species:		resentative isol 7 1 per species pl		GenBank sequence accession number(s)	
Blackbird	associate	d gemycircularvirus 1	P9			KF371641	
		gemycircularvirus 1	52 Fe	c78023 cow		KT862253	
		gemycircularvirus 1		V-3 NZ-NZG01 Sef-2	012	KM510192	
		d gemycircularvirus 1	G14			JQ412056	
		ted gemycircularvirus 1	2.54E	+08		KT309029	
		l gemycircularvirus 1		c79971 chicken		KT862243	
		gemycircularvirus 2		c16497 chicken		KT862242	
		ed gemycircularvirus 1		X-2010		JX185429	
		gemycircularvirus 1		c80061 horse		KT862248	
		gemycircularvirus 1	as50			KF371638	
		ed gemycircularvirus 1	P24a			KF371636	
		ed gemycircularvirus 2	P24b			KF371637	
		ed gemycircularvirus 3	P24c			KF371639	
		ted gemycircularvirus 1	VNHJ1W			KF413620	
		emycircularvirus 1	29 Fec80018 llama			KT862245	
	Ŭ	gemycircularvirus 1	as24			KF371635	
		ated gemycircularvirus	u02-1				
1		atou gomyonoului viruo	BtMf-CV-23/GD2012			KJ641719	
Monaoose	associa	ted gemycircularvirus 1	478d			KP263547	
		d gemycircularvirus 1	SDBVL G			HQ335086	
		d gemycircularvirus 1	OdaGmV-1-US-260BC-12			KM598385	
		d gemycircularvirus 2	OdaGmV-2-US-1642KW-12		2	KM598387	
		d gemycircularvirus 1	PaGmV-1 TO STO14-29204 2014			KT253577	
		gemycircularvirus 1		c80061 pig	2011	KT862250	
		gemycircularvirus 2	as5	ooooon pig		KF371640	
		d gemycircularvirus 1	Tbat 4	15285		KT732804	
		d gemycircularvirus 2		103791		KT732792	
		d gemycircularvirus 3		A 103852		KT732797	
Pteropus associated gemycircularvirus 4			H 103806		KT732814		
		d gemycircularvirus 5	isuri				
		a genigen eardi virao o	Tbat 1	12377		KT732801	
Pteronus	associate	d gemycircularvirus 6	Tbat 2			KT732795	
		d gemycircularvirus 7		A 103746		KT732807	
Pteropus associated gemycircularvirus 8		Tbat 3			KT732806		
Pteropus associated gemycircularvirus 9		Tbat 2			KT732795		
		d gemycircularvirus 10		H 103958		KT732794	
		nycircularvirus 1	Ch-zjr			KR912221	
		mycircularvirus 1	BS39			KJ547638	

Sewage derived gemycircularvirus 2	BS4117	KJ547641
Sewage derived gemycircularvirus 3	BS4014	KJ547636
Sewage derived gemycircularvirus 4	BS3972	KJ547640
Sewage derived gemycircularvirus 5	BS3970	KJ547639
Sheep associated gemycircularvirus 1	47 Fec80064 sheep	KT862249
Soybean associated gemycircularvirus 1	SlaGemV1-1	KT598248

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, explain how the new species meet these criteria.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.
 - Further material in support of this proposal may be presented in the Appendix, Module 11

Currently the genus *Gemycircularvirus* contains a single species, *Sclerotinia gemycircularvirus 1*, encompassing a single isolate, Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1) (Krupovic et al., 2016). However, 120 viral genomes with varying degree of similarity — from rather divergent to nearly identical — to that of SsHADV-1 have been sequenced from various samples. Although initially detected by high-throughput sequencing the vast majority (~90%) of these genomes were subsequently PCR amplified from the original samples, cloned and sequenced using Sanger method to ensure high quality of the genomic data. A proper taxonomic framework and demarcation criteria are necessary to accommodate these viruses within the family *Genomoviridae*. The purpose of this proposal is to establish such demarcation criteria.

Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

To determine the optimal species demarcation criteria within the tentative genera, we analyzed the distribution of genome-wide pairwise identities (one minus Hamming distances of pairwise aligned sequences with pairwise deletion of gaps) across all 121 genomes that fall into the *Genomoviridae* family (Figure 2, 6). The analysis has shown that 78% pairwise identity might

be a conservative value for species demarcation.

All of the proposed species (n=43; 73 isolates) within the genus *Gemycircularvirus* share between 56% and 77% genome-wide sequence similarity with other isolates within the same genus. Isolates within the 43 species cluster with 99% and 96% branch support within phylogenetic trees constructed from either RC-Rep or full genome sequences respectively (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code 201	6.001bF	(assigned by ICTV	officers)	
To create 16 new species within:				
			Fill in all that apply.	
Genus:	Gemykibivirus (n	new)	If the higher taxon has yet to be	
Subfamily:			created (in a later module, below) write	
Family:	Genomoviridae		"(new)" after its proposed name.	
Order:			 If no genus is specified, enter "unassigned" in the genus box. 	
Name of new	species:	Representative isolate (only 1 per species pleas	: GenBank sequence accession	
Badger associated	gemykibivirus 1	588t	KP263543	
Black robin associa	ated gemykibivirus 1	P21	KF371634	
Blackbird associate	ed gemykibivirus 1	P22	KF371633	
Bovine associated	gemykibivirus 1	HCBI8.215	LK931483	
Dragonfly associate	ed gemykibivirus 1	FL1-2X-2010	JX185430	
Human associated	gemykibivirus 1	MSSI2.225	LK931485	
Human associated	gemykibivirus 2	SL1	KP133075	
Human associated	gemykibivirus 3	GemyC1c	KP987887	
Human associated	gemykibivirus 4	GeTz1	KT363839	
Human associated	gemykibivirus 5	HV-GcV2	KU343137	
Mongoose associated gemykibivirus 1		160b	KP263545	
Pteropus associated gemykibivirus 1		Tbat A 64418	KT732813	
Rhinolophus associated gemykibivirus 1		BS3911	KJ547642	
Rhinolophus associated gemykibivirus 2		BtRf-CV-8/NM2013	KJ641726	
Sewage derived ge		BS4149	KJ547643	
	emykibivirus 2	BS3911	KJ547643	

Reasons to justify the creation and assignment of the new species:

•

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.
- Further material in support of this proposal may be presented in the Appendix, Module 11

Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

To determine the optimal species demarcation criteria within the tentative genera, we analyzed the distribution of genome-wide pairwise identities (one minus Hamming distances of pairwise aligned sequences with pairwise deletion of gaps) across all 121 genomes that fall into the *Genomoviridae* family (Figure 2, 6). The analysis has shown that 78% pairwise identity might be a conservative value for species demarcation.

All of the proposed species (n=16; 29 isolates) within the genus *Gemykibivirus* share between 57% and 77% genome-wide sequence similarity with other isolates within the same genus. Isolates within the 15 species cluster with 99% branch support within phylogenetic trees constructed from RC-Rep and two well supported clades (100 and 96%) from full genome sequences (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code	201	6.001cF	(assigned by	ICTV office	ers)	
To crea	ate 5 no	ew species within	n:			
					n all that apply.	
(Genus:	Gemygorvirus	(new)		he higher taxon has yet to be	
Subf	amily:				ated (in a later module, below) write ew) " after its proposed name.	
F	amily:	Genomoviridae			 If no genus is specified, enter 	
	Order:				assigned" in the genus box.	
Name	▲		Representative is (only 1 per species		GenBank sequence accession number(s)	
Canine a	ssociated	gemygorvirus 1	53 Fec7 dog		KT862254	
		4 Fec7 duck		KT862238		
Pteropus associated gemygorvirus 1 Tbat A		Tbat A 103952		KT732790		
Sewage derived gemygorvirus 1 BS396		BS3963		KJ547635		
Starling a	ssociated	gemygorvirus 1	P14		KF371632	

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.

Further material in support of this proposal may be presented in the Appendix, Module 11

Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

To determine the optimal species demarcation criteria within the tentative genera, we analyzed the distribution of genome-wide pairwise identities (one minus Hamming distances of pairwise aligned sequences with pairwise deletion of gaps) across all 121 genomes that fall into the *Genomoviridae* family (Figure 2, 6). The analysis has shown that 78% pairwise identity might be a conservative value for species demarcation.

All of the proposed species (n=5; 9 isolates) within the genus *Gemygorvirus* share between 61% and 77% genome-wide sequence similarity with other isolates within the same genus. Isolates within the 5 species cluster with 100% and 99% branch support within phylogenetic trees constructed from either RC-Rep or full genome sequences respectively (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code 2016.001dF			(assigned by IC	CTV office	ers)
To create 2	To create 2 new species within:				
Genu Subfamily	y:	Gemykolovirus (r	new)	 If the creater of the c	all that apply. The higher taxon has yet to be ated (in a later module, below) write aw)" after its proposed name.
Family Orde	2	Genomoviridae		 If no genus is specified, enter "unassigned" in the genus box. 	
Name of new species:		Representative isolate: (only 1 per species please)		GenBank sequence accession number(s)	
, ,		Tbat A 103779		KT732798	
		Tbat H 103921		KT732800	

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.

• Further material in support of this proposal may be presented in the Appendix, Module 11 Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

To determine the optimal species demarcation criteria within the tentative genera, we analyzed the distribution of genome-wide pairwise identities (one minus Hamming distances of pairwise aligned sequences with pairwise deletion of gaps) across all 121 genomes that fall into the *Genomoviridae* family (Figure 2, 6). The analysis has shown that 78% pairwise identity might be a conservative value for species demarcation.

All of the proposed species (n=2; 3 isolates) within the genus *Gemykolovirus* share between 63% and 77% genome-wide sequence similarity with other isolates within the same genus. Isolates within the 2 species cluster with 100% and 89% branch support within phylogenetic trees constructed from either RC-Rep or full genome sequences respectively (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code	Code 2016.001eF			TV office	ers)
To create	To create 1 new species within:				
					all that apply.
Ge	enus:	Gemyvongvirus (new)		he higher taxon has yet to be
Subfan	nily:			 created (in a later module, below) write "(new)" after its proposed name. If no genus is specified, enter "unassigned" in the genus box. 	
Fan	nily:	Genomoviridae			
Or	rder:				
Name of new species:		Representative isolate: (only 1 per species please)		GenBank sequence accession number(s)	
Human associated gemyvongvirus 1		DB1		KP974693	

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.

Further material in support of this proposal may be presented in the Appendix, Module 11

Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

The single species *Human associated gemyvongvirus 1* within the genus *Gemyvongvirus* shares

between 56% and 62% genome-wide sequence similarity with other isolates in other genera and is a divergent taxon in the phylogenetic trees constructed from either RC-Rep or full genome sequences (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code 201	6.001fF	(assigned by IC	TV office	ers)
To create 3 no	ew species within:			
Genus:	Gemykrogvirus (new)	• If th	n all that apply. ne higher taxon has yet to be ated (in a later module, below) write
Subfamily: Family: Order:	Genomoviridae		 "(new)" after its proposed name. If no genus is specified, enter "unassigned" in the genus box. 	
Name of new species:		Representative isol (only 1 per species p	late:	GenBank sequence accession number(s)
Bovine associated gemykrogvirus 1 HCB		HCB19.212		LK931484
Caribou associated	l gemykrogvirus 1	FaGmCV-13		KJ938717
Sewage derived ge	emykrogvirus 1	BS3913		KJ547634

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.

• Further material in support of this proposal may be presented in the Appendix, Module 11 Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

To determine the optimal species demarcation criteria within the tentative genera, we analyzed the distribution of genome-wide pairwise identities (one minus Hamming distances of pairwise aligned sequences with pairwise deletion of gaps) across all 121 genomes that fall into the *Genomoviridae* family (Figure 2, 6). The analysis has shown that 78% pairwise identity might be a conservative value for species demarcation.

All of the proposed species (n=3; 3 isolates) within the genus *Gemykrogvirus* share between 67% and 77% genome-wide sequence similarity with other isolates within the same genus. Isolates within the 3 species cluster with 99% and 100% branch support within phylogenetic trees constructed from either RC-Rep or full genome sequences respectively (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code 2	Code 2016.001gF			TV office	ers)	
To create 1 new species within:						
					all that apply.	
Gen	nus:	Gemytondvirus (r	new)	 If the higher taxon has yet to be created (in a later module, below) write "(new)" after its proposed name. 		
Subfam	ily:					
Fam	ily:	Genomoviridae		 If no genus is specified, enter 		
Ord	der:			"unassigned" in the genus box.		
Name of new species:		Representative isolate: (only 1 per species please)		GenBank sequence accession number(s)		
Ostrich associated gemytondvirus 1		as3		KF371630		

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, explain how the new species meet these criteria.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.

Further material in support of this proposal may be presented in the Appendix, Module 11

Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

The single species Ostrich associated gemytondvirus 1 within the genus Gemytondvirus shares

between 53% and 61% genome-wide sequence similarity with other isolates in other genera and is a divergent taxon in the phylogenetic trees constructed from either RC-Rep or full genome sequences (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code	201	6.001hF	(assigned by IC	TV office	ers)	
To crea	To create 1 new species within:					
					all that apply.	
C	Benus:	Gemykroznavirus	s (new)	 If the higher taxon has yet to be created (in a later module, below) write "(new)" after its proposed name. 		
Subfa	amily:					
Fa	amily:	Genomoviridae		 If no genus is specified, enter 		
(Order:			"unassigned" in the genus box.		
Name of new species:		Representative isolate: (only 1 per species please)		GenBank sequence accession number(s)		
Rabbit associated gemykroznavirus 1as35		as35		KF371631		

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.
- Further material in support of this proposal may be presented in the Appendix, Module 11 Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation

protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

The single species *Rabbit associated gemykroznavirus 1* within the genus *Gemykroznavirus*

shares between 56% and 61% genome-wide sequence similarity with other isolates in other genera and is a divergent taxon in the phylogenetic trees constructed from either RC-Rep or full genome sequences (Figure 3-4).

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for **one** isolate of each new species proposed.

Code	201	6.001iF	(assigned by IC	TV office	ers)
To crea	te 1 ne	ew species within:			
					all that apply.
G	enus:	Gemyduguivirus	(new)	 If the higher taxon has yet to be 	
Subfa	amily:			created (in a later module, below) write "(new)" after its proposed name.	
Fa	mily:	Genomoviridae		 If no genus is specified, enter "unassigned" in the genus box. 	
(Order:				
Name of new species:		Representative isolate: (only 1 per species please)		GenBank sequence accession number(s)	
Dragonfly associated gemyduguivirus 1 TO-DI		TO-DFS3B2-2010		JX185428	

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.
- Further material in support of this proposal may be presented in the Appendix, Module 11 Maximum likelihood phylogenetic analyses based on the rolling circle replication initiation

protein (RC-Rep) of 121 genomoviruses revealed several well-supported clades that could be considered as genera within the family (Figure 1). Genomoviruses form a sister group to geminiviruses in the RC-Rep-based phylogenetic analyses (Krupovic et al., 2016). Thus, to assess the taxonomic structure of the *Genomoviridae*, we used geminiviral sequences as a guide. Five clades and 4 additional singletons within the *Genomoviridae* branch display equivalent intra-family divergence as the established genera within the family *Geminiviridae* in both nucleotide and protein sequence inferred phylogenies (Figure 2).

Consequently, in module 3 we propose to establish 8 new genera (in addition to the existing genus *Gemycircularvirus*) within the family *Genomoviridae* (see below). We note that the clades obtained in the RC-Rep based phylogeny are not fully consistent with those obtained in the phylogenetic analysis of the full genome or the highly diverse capsid protein (CP) sequences (Figure 3, 4, 5). The reason for this mismatch is likely to be intra-familial recombination between different genomovirus genomes resulting in chimeric entities encoding RC-Rep and CP with different evolutionary histories. Given that CP sequences of genomoviruses are considerably more divergent that the RC-Rep sequences (Figure 5), it appears reasonable to establish the taxonomic framework using the RC-Rep (Figure 4). The latter protein is also conserved in other eukaryotic ssDNA viruses (which is not the case for the capsid proteins) and can thus be used to assess the place of genomoviruses within the larger community of ssDNA viruses.

The single species *Dragonfly associated gemyduguivirus 1* within the genus *Gemyduguivirus*

shares between 57% and 62% genome-wide sequence similarity with other isolates in other genera and is a divergent taxon in the phylogenetic trees constructed from either RC-Rep or full genome sequences (Figure 3-4).

creating a new genus

Ideally, a genus should be placed within a higher taxon.

Code	201	6.001jF	(assigned by I	CTV officers)		
To create	a new	genus within:				
				Fill in all that apply.		
Subfa	mily:			 If the higher taxon has yet to be created (in a later module, holew) write "(new)" 		
Fai	mily:	Genomoviridae		(in a later module, below) write "(new) " after its proposed name.		
0	rder:			 If no family is specified, enter 		
				"unassigned" in the family box		

naming a new genus

Code	2016.001kF	(assigned by ICTV officers)
To name tl	ne new genus: <i>Gemykibivirus</i>	

Assigning the type species and other species to a new genus

Code	2016.001lF	(assigned by ICTV officers)				
To designa	To designate the following as the type species of the new genus					
Dragonfly	associated gemykibivirus 1	Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered				
The new genus will also contain any other new species created and assigned to it (Module 2) and any that are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species (including the type species) that the genus will contain:						

16

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that viruses included within the proposed genus *Gemykibivirus* form a monophyletic group sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

Gemini- and myco-like kibi virus: kibi means circular in Amharic

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

We propose a 78% genome-wide pairwise identity as a species cut-off. That is, isolates whose genomes share < 78% genome-wide pairwise identity should be considered as putative new species. (Figures 2-7)

creating a new genus

Ideally,	a ger	nus s	hould	be j	placed	within a	a ł	highei	r taxon.	
		1								_

Code 2016.001mF (as			(assigned by I	(assigned by ICTV officers)	
To create a	a new	genus within:			
				Fill in all that apply.	
Subfar	nily:			 If the higher taxon has yet to be created (in a later module, helpsu) write "(new)" 	
Far	nily:	Genomoviridae		(in a later module, below) write "(new) " after its proposed name.	
O	rder:			 If no family is specified, enter "unassigned" in the family box 	

naming a new genus

Code	2016.001nF	(assigned by ICTV officers)
To name th	he new genus: <i>Gemygorvirus</i>	

Assigning the type species and other species to a new genus

Code	2016.001oF	(assigned by ICTV officers)		
To designa	te the following as the type sp	ecies of the new genus		
Starling as	sociated gemygorvirus 1	Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered		
The new genus will also contain any other new species created and assigned to it (Module 2) and any that are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species				
(including	the type species) that the genu	us will contain:		

5

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that viruses included within the proposed genus *Gemygorvirus* form a monophyletic group sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

Gemini- and myco-like gor virus: gor means round in Hindi

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

We propose a 78% genome-wide pairwise identity as a species cut-off. That is, isolates whose

genomes share < 78% genome-wide pairwise identity should be considered as putative new species. (Figures 2-7)

creating a new genus

Ideally, a gen	us sho	uld be placed within a highe	er taxon.	
Code 2016.001pF			(assigned by ICTV officers)	
To create	a new	genus within:	Fill in all that apply.	
Subfamily:			 If the higher taxon has yet to be created (in a later module, helper) write "(near)" 	
Family: Genomoviridae			(in a later module, below) write "(new)" after its proposed name.	
C	Order:		 If no family is specified, enter 	
			"unassigned" in the family box	

naming a new genus

Code	2016.001qF	(assigned by ICTV officers)
To name tl	ne new genus: Gemykolovirus	

Assigning the type species and other species to a new genus

Code	2016.001rF	(assigned by ICTV officers)				
To designa	ate the following as the type sp	pecies of the new genus				
Pteropus a	ssociated gemykolovirus 1	Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered				
are being m	The new genus will also contain any other new species created and assigned to it (Module 2) and any that are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species (including the type species) that the genus will contain:					

2

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that viruses included within the proposed genus *Gemykolovirus* form a monophyletic group sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

Gemini- and myco-like kolo virus: Kolo means round in Czech

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

We propose a 78% genome-wide pairwise identity as a species cut-off. That is, isolates whose

genomes share < 78% genome-wide pairwise identity should be considered as putative new species. (Figures 2-7)

creating a new genus

Ideally, a g	genus sho	uld be placed within a hi	gher taxon.
Code	201	16.001sF	(assigned by ICTV officers)
To crea	ite a new	genus within:	Fill in all that apply.
Sub	ofamily:		If the higher taxon has yet to be created
Family: <i>Genomoviridae</i>			(in a later module, below) write "(new)" after its proposed name.
	Order:		 If no family is specified, enter "unassigned" in the family box

naming a new genus

Code	2016.001tF	(assigned by ICTV officers)
To name the new genus: Gemyvongvirus		

Assigning the type species and other species to a new genus

Code	2016.001uF	(assigned by ICTV officers)			
To desig	nate the following as the type sp	pecies of the new genus			
	associated gemyvongvirus 1	Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered			
The new genus will also contain any other new species created and assigned to it (Module 2) and any that are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species (including the type species) that the genus will contain:					

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that *Human associated gemyvongvirus 1* included within the proposed genus *Gemyvongvirus* is sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

<u>Ge</u>mini- and <u>my</u>co-like <u>vong virus</u>: vong means circular in Lao

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

creating a new genus

Ideally, a g	genus sho	uld be placed within a hi	igher taxon.	
Code	2016.001vF		(assigned by ICTV officers)	
To create a new genus within:				Fill in all that apply.
Subfamily:				• If the higher taxon has yet to be created
Family:GenomoviridaeOrder:			 (in a later module, below) write "(new)" after its proposed name. 	
			 If no family is specified, enter "unassigned" in the family box 	

naming a new genus

Code	2016.001wF	(assigned by ICTV officers)
To name the new genus: Gemykrogvirus		

Assigning the type species and other species to a new genus

Code 2016.001xF		(assigned by ICTV officers)	
To design	nate the following as the type s	pecies of the new genus	
Bovine associated gemykrogvirus 1Every genus must have a type species. This s be a well characterized species although not necessarily the first to be discovered			
The new genus will also contain any other new species created and assigned to it (Module 2) and any that are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species (including the type species) that the genus will contain:			

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that viruses included within the proposed genus *Gemykrogvirus* form a monophyletic group sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

Gemini- and myco-like korg virus: korg means round in Slovenian

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

We propose a 78% genome-wide pairwise identity as a species cut-off. That is, isolates whose

genomes share < 78% genome-wide pairwise identity should be considered as putative new species (Figures 2-7).

creating a new genus

Ideally, a g	genus should be placed within	n a higher taxon.
Code 2016.001yF		(assigned by ICTV officers)
To crea	ate a new genus within:	Fill in all that apply.
Su	bfamily:	If the higher taxon has yet to be created (inclusion of the field of the f
	Family: Genomoviridae	(in a later module, below) write "(new)" after its proposed name.

naming a new genus

Order:

0	0	
Code	2016.001zF	(assigned by ICTV officers)
To name the new genus: Gemytondvirus		

 If no family is specified, enter "unassigned" in the family box

Assigning the type species and other species to a new genus

Code	2016.001aaF (assigned by ICTV officers)				
To designa	To designate the following as the type species of the new genus				
Ostrich associated gemytondvirus 1		Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered			
• • •	The new genus will also contain any other new species created and assigned to it (Module 2) and any that				
-	are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species				
(including the type species) that the genus will contain:					
1					

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that *Ostrich associated gemytondvirus 1* included within the proposed genus *Gemytondvirus* is sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

Gemini- and myco-like tond virus: tond means round in Maltese

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

creating a new genus

Ideally, a ge	nus sho	uld be placed within a hi	gher taxon.	
Code	Code 2016.001abF		(assigned by ICTV officers)	
To create a new genus within:				Fill in all that apply.
Subf	Subfamily:			• If the higher taxon has yet to be created
Family: Genomoviridae			(in a later module, below) write "(new)" after its proposed name.	
Order:			 If no family is specified, enter "unassigned" in the family box 	

naming a new genus

Code	2016.001acF	(assigned by ICTV officers)
To name the new genus: Gemykroznavirus		

Assigning the type species and other species to a new genus

Code	2016.001adF	(assigned by ICTV officers)		
To designa	To designate the following as the type species of the new genus			
Rabbit associated gemykroznavirus 1		Every genus must have a type species. This should be a well characterized species although not necessarily the first to be discovered		
The new genus will also contain any other new species created and assigned to it (Module 2) and any that are being moved from elsewhere (Module 7b). Please enter here the TOTAL number of species (including the type species) that the genus will contain:				
(including the type species) that the genus will contain:				

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that *Rabbit associated gemykroznavirus 1* included within the proposed genus *Gemykroznavirus* is sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

Gemini- and myco-like krozna virus: krozna means circular in Slovenian

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

creating a new genus

Ideally, a gen	us should be placed	within a highe	er taxon.

Code	2016.001aeF (assigned by ICTV officers)		CTV officers)	
To create a new genus within:				Fill in all that apply.
Subfa	mily:			 If the higher taxon has yet to be created
Fa	mily:	Genomoviridae		(in a later module, below) write "(new) " after its proposed name.
С	Order:			 If no family is specified, enter "unassigned" in the family box

naming a new genus

Code	2016.001afF	(assigned by ICTV officers)
To name the new genus: <i>Gemduguivirus</i>		

Assigning the type species and other species to a new genus

Code	2016.001agF	(assigned by ICTV officers)								
To designate the following as the type species of the new genus										
Dragonfly	associated gemyduguivirus 1	Every genus must have a type species. This shou be a well characterized species although not necessarily the first to be discovered								
are being m		v species created and assigned to it (Module 2) and any that Please enter here the TOTAL number of species as will contain:								
1										

Reasons to justify the creation of a new genus:

Additional material in support of this proposal may be presented in the Appendix, Module 11

Phylogenetic analyses based on the nucleotide and amino acid sequences of the RC-Rep show that *Dragonfly associated gemyduguivirus 1* included within the proposed genus *Gemduguivirus* is sufficiently distinct from other genera within the *Genomoviridae*.

Origin of the new genus name:

<u>Ge</u>mini- and <u>my</u>co-like <u>dugui virus</u>: dugui means circular in Mongolian

Reasons to justify the choice of type species:

First genome to be identified in this genus

Species demarcation criteria in the new genus:

If there will be more than one species in the new genus, list the criteria being used for species demarcation and explain how the proposed members meet these criteria.

MODULE 11: APPENDIX: supporting material

additional material in support of this proposal

References:

- Conceicao-Neto, N., Zeller, M., Heylen, E., Lefrere, H., Mesquita, J. R. & Matthijnssens, J. (2015). Fecal virome analysis of three carnivores reveals a novel nodavirus and multiple gemycircularviruses. Virol J 12, 79.
- Dayaram, A., Opong, A., Jaschke, A., Hadfield, J., Baschiera, M., Dobson, R. C., Offei, S. K., Shepherd, D. N., Martin, D. P. & Varsani, A. (2012). Molecular characterisation of a novel cassava associated circular ssDNA virus. Virus Res 166, 130-135.
- Dayaram, A., Potter, K. A., Pailes, R., Marinov, M., Rosenstein, D. D. & Varsani, A. (2015). Identification of diverse circular single-stranded DNA viruses in adult dragonflies and damselflies (Insecta: Odonata) of Arizona and Oklahoma, USA. Infect Genet Evol 30, 278-287.
- Du, Z., Tang, Y., Zhang, S., She, X., Lan, G., Varsani, A. & He, Z. (2014). Identification and molecular characterization of a single-stranded circular DNA virus with similarities to Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1. Arch Virol 159, 1527-1531.
- Hanna, Z. R., Runckel, C., Fuchs, J., DeRisi, J. L., Mindell, D. P., Van Hemert, C., Handel, C. M. & Dumbacher, J. P. (2015). Isolation of a Complete Circular Virus Genome Sequence from an Alaskan Black-Capped Chickadee (Poecile atricapillus) Gastrointestinal Tract Sample. Genome Announc 3, 01081-01015.
- Kraberger, S., Arguello-Astorga, G. R., Greenfield, L. G., Galilee, C., Law, D., Martin, D. P. & Varsani, A. (2015a). Characterisation of a diverse range of circular replicationassociated protein encoding DNA viruses recovered from a sewage treatment oxidation pond. Infect Genet Evol 31, 73-86.
- Kraberger, S., Farkas, K., Bernardo, P., Booker, C., Arguello-Astorga, G. R., Mesleard, F., Martin, D. P., Roumagnac, P. & Varsani, A. (2015b). Identification of novel Bromusand Trifolium-associated circular DNA viruses. Arch Virol 160, 1303-1311.
- Kraberger, S., Stainton, D., Dayaram, A., Zawar-Reza, P., Gomez, C., Harding, J. S. & Varsani, A. (2013). Discovery of Sclerotinia sclerotiorum Hypovirulence-Associated Virus-1 in Urban River Sediments of Heathcote and Styx Rivers in Christchurch City, New Zealand. Genome announcements 1, 00559-00513.
- Krupovic, M., Ghabrial, S. A., Jiang, D. & Varsani, A. (2016). Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol.
- Lamberto, I., Gunst, K., Muller, H., Zur Hausen, H. & de Villiers, E. M. (2014). Mycoviruslike DNA virus sequences from cattle serum and human brain and serum samples from multiple sclerosis patients. Genome announcements 2, 00848-00814.
- Li, W., Gu, Y., Shen, Q., Yang, S., Wang, X., Wan, Y. & Zhang, W. (2015). A novel gemycircularvirus from experimental rats. Virus Genes 51, 302-305.
- Male, M. F., Kami, V., Kraberger, S. & Varsani, A. (2015). Genome Sequences of Poaceae-Associated Gemycircularviruses from the Pacific Ocean Island of Tonga. Genome announcements 3, 01144-01115.

Male, M. F., Kraberger, S., Stainton, D., Kami, V. & Varsani, A. (2016). Cycloviruses, gemycircularviruses and other novel replication-associated protein encoding circular viruses in Pacific flying fox (Pteropus tonganus) faeces. Infect Genet Evol 39, 279-292.

Marzano, S. Y. & Domier, L. L. (2016). Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res 213, 332-

References:

34	12
5-	т∠

Muhire,	B.M.,	Varsani,	A., Ma	artin, I	D.P. ((2014).	SDT: a	virus	classi	fication	n tool	based of	n
pairw	vise se	quence al	lignme	nt and	iden	tity cal	culatior	n. PLo	S One	9:e108	3277.		

- Ng, T. F., Chen, L. F., Zhou, Y., Shapiro, B., Stiller, M., Heintzman, P. D., Varsani, A., Kondov, N. O., Wong, W., Deng, X., Andrews, T. D., Moorman, B. J., Meulendyk, T., MacKay, G., Gilbertson, R. L. & Delwart, E. (2014). Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc Natl Acad Sci U S A 111, 16842-16847.
- Ng, T. F., Willner, D. L., Lim, Y. W., Schmieder, R., Chau, B., Nilsson, C., Anthony, S., Ruan, Y., Rohwer, F. & Breitbart, M. (2011). Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes. Plos One 6, e20579.
- Phan, T. G., Mori, D., Deng, X., Rajindrajith, S., Ranawaka, U., Fan Ng, T. F., Bucardo-Rivera, F., Orlandi, P., Ahmed, K. & Delwart, E. (2015). Small circular single stranded DNA viral genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. Virology 482, 98-104.
- Rosario, K., Dayaram, A., Marinov, M., Ware, J., Kraberger, S., Stainton, D., Breitbart, M. & Varsani, A. (2012). Diverse circular ssDNA viruses discovered in dragonflies (Odonata: Epiprocta). J Gen Virol 93, 2668-2681.
- Sikorski, A., Massaro, M., Kraberger, S., Young, L. M., Smalley, D., Martin, D. P. & Varsani, A. (2013). Novel myco-like DNA viruses discovered in the faecal matter of various animals. Virus Res 177, 209-216.
- Steel, O., Kraberger, S., Sikorski, A., Young, L. M., Catchpole, R. J., Stevens, A. J., Ladley, J. J., Coray, D. S., Stainton, D., Dayaram, A., Julian, L., van Bysterveldt, K. & Varsani, A. (2016). Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. Infect Genet Evol 43, 151-164.
- Uch, R., Fournier, P. E., Robert, C., Blanc-Tailleur, C., Galicher, V., Barre, R., Jordier, F., de Micco, P., Raoult, D. & Biagini, P. (2015). Divergent Gemycircularvirus in HIV-Positive Blood, France. Emerging infectious diseases 21, 2096-2098.
- van den Brand, J. M., van Leeuwen, M., Schapendonk, C. M., Simon, J. H., Haagmans, B. L., Osterhaus, A. D. & Smits, S. L. (2012). Metagenomic analysis of the viral flora of pine marten and European badger feces. J Virol 86, 2360-2365.
- Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., Dong, J., Sun, L., Zhu, Y., Du, J., Yang, F., Zhang, S. & Jin, Q. (2016). Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. The ISME journal 10, 609-620.
- Yu, X., Li, B., Fu, Y., Jiang, D., Ghabrial, S. A., Li, G., Peng, Y., Xie, J., Cheng, J., Huang, J. & Yi, X. (2010). A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci U S A 107, 8387-8392.

Annex:

Include as much information as necessary to support the proposal, including diagrams comparing the old and new taxonomic orders. The use of Figures and Tables is strongly recommended but direct pasting of content from publications will require permission from the copyright holder together with appropriate acknowledgement as this proposal will be placed on a public web site. For phylogenetic analysis, try to provide a tree where branch length is related to genetic distance.

Table 1: Details of all isolates within the genus Gemycircularvirus	
--	--

Species	Accession	Isolate	Isolation source	Common Name	Sample type	Country	Reference
Blackbird associated							Sikorski et
gemycircularvirus 1 Blackbird associated	KF371641	P9	Turdus merula	Blackbird	Faeces	New Zealand	al., 2013 Sikorski et
gemycircularvirus 1 Blackbird associated	KF371642	P22	Turdus merula	Blackbird	Faeces	New Zealand	al., 2013 Sikorski et
gemycircularvirus 1	KF371643	as41	Ovis aries	Sheep	Faeces	New Zealand	al., 2013
Bovine associated gemycircularvirus 1	KT862253	52 Fec78023 cow	Bos taurus	Cow	Faeces	New Zealand	Steel et al., 2016
Bromus associated		BasCV-3 NZ-		Soft brome /			Kraberger e
gemycircularvirus 1	KM510192	NZG01 Sef-2012	Bromus hordeaceus	Bull grass	Leaf	New Zealand	al., 2015b
Cassava associated gemycircularvirus 1	JQ412056	G14	Manihot esculenta	Cassava	Leaf	Ghana	Dayaram et al., 2012
Cassava associated				_			Dayaram et
gemycircularvirus 1	JQ412057	G5	Manihot esculenta	Cassava	Leaf	Ghana	al., 2012
Chickadee associated				_		_	Male et al.,
gemycircularvirus 1	KT309029	254065908	Saccharum hybrid	Sugarcane	Leaf	Tonga	2015
Chicken associated		27 Fec79971			_		Steel et al.,
gemycircularvirus 1	KT862243	chicken	Gallus gallus domesticus	Chicken	Faeces	New Zealand	2016
Chicken associated gemycircularvirus 1	KT862244	29 Fec79971 llama	Lama glama	Llama	Faeces	New Zealand	Steel et al., 2016
Chicken associated							Steel et al.,
gemycircularvirus 1	KT862246	30 Fec79971 horse	Equus ferus caballus	Horse	Faeces	New Zealand	2016
Chicken associated		27 Fec16497					Steel et al.,
gemycircularvirus 2	KT862242	chicken	Gallus gallus domesticus	Chicken	Faeces	New Zealand	2016
Dragonfly associated					Abdome		Rosario et
gemycircularvirus 1	JX185429	FL2-5X-2010	Erythemis simplicicollis	Dragonfly	n	USA	al., 2012
Equine associated			· · ·				Steel et al.,
gemycircularvirus 1	KT862248	30 Fec80061 horse	Equus ferus caballus	Horse	Faeces	New Zealand	2016
Fur seal associated			,	New Zealand			Sikorski et
gemycircularvirus 1 Fur seal associated	KF371638	as50	Arctocephalus forsteri	fur seal	Faeces	New Zealand	al., 2013 Steel et al.,
gemycircularvirus 1	KT862241	27 Fec1 chicken	Gallus gallus domesticus	Chicken	Faeces	New Zealand	2016
Gerygone associated			<u> </u>	Chatham Island			Sikorski et
gemycircularvirus 1	KF371636	P24a	Gerygone albofrontata	warbler	Faeces	New Zealand	al., 2013
Gerygone associated gemycircularvirus 2	KF371637	P24b	Gerygone albofrontata	Chatham Island warbler	Faeces	New Zealand	Sikorski et al., 2013
				Chatham			
Gerygone associated				Island			Sikorski et
gemycircularvirus 3	KF371639	P24c	Gerygone albofrontata	warbler	Faeces	New Zealand	al., 2013
Hypericum associated gemycircularvirus 1	KF413620	VNHJ1W	Hypericum japonicum	Hypericum	Leaf	Vietnam	Du et al., 2014
Lama associated							Steel et al.,
gemycircularvirus 1 Lama associated	KT862245	29 Fec80018 llama	Lama glama	Llama	Faeces	New Zealand	2016 Steel et al.,
gemycircularvirus 1	KT862247	30 Fec80018 horse	Equus ferus caballus	Horse	Faeces	New Zealand	2016
Mallard associated							Sikorski et
gemycircularvirus 1	KF371635	as24	Anas platyrhynchos	Mallard duck	Faeces	New Zealand	al., 2013
					Pharyng eal &		
Miniopterus associated	10.00	BtMf-CV-		5.4	rectal	01.1	Wu et al.,
gemycircularvirus 1	KJ641719	23/GD2012	Miniopterus fuliginosus	Bat	swabs	China	2015
Mongoose associated				Egyptian			Conceicao- Neto et al.,
gemycircularvirus 1	KP263547	478d	Herpestes ichneumon	mongoose	Faeces	Portugal	2015
Mosquito associated					Mosquit o		Ng et al.,
gemycircularvirus 1	HQ335086	SDBVL G	Culex erythrothorax	Mosquito	samples	USA	2011

Odonata associated		OdaGmV-1-US-			Abdome		Dayaram et
gemycircularvirus 1	KM598385	260BC-12	Ischnura posita	Damselfly	n	USA	al., 2015
Odonata associated		OdaGmV-1-US-			Abdome		Dayaram et
gemycircularvirus 1	KM598386	260SR1-12	Pantala hymenaea	Dragonfly	n	USA	al., 2015
Odonata associated		OdaGmV-2-US-	·		Abdome		Dayaram et
gemycircularvirus 2	KM598387	1642KW-12	Aeshna multicolor	Dragonfly	n	USA	al., 2015
Odonata associated	1 and 0 d d d d	OdaGmV-2-US-		Dragonity	Abdome	00/1	Dayaram et
gemycircularvirus 2	KM598388	1634LM2-12	Libellula saturata	Dragonfly	n	USA	al., 2015
Poaceae associated	NIVIJ90300	PaGmV-1 TO	Libellula Salurala	Diagonity	11	USA	
	WT050577		Defference in the	Dat	Dist		Li et al.,
gemycircularvirus 1	KT253577	STO14-29204 2014	Rattus norvegicus	Rat	Blood	China	2015
Poaceae associated		PaGmV-1 TO				_	Male et al.,
gemycircularvirus 1	KT253578	STO15-29204 2014	Brachiaria deflexa	Signalgrass	Leaf	Tonga	2015
Poaceae associated		PaGmV-1 TO					Male et al.,
gemycircularvirus 1	KT253579	STO18-29204 2014	Brachiaria deflexa	Signalgrass	Leaf	Tonga	2015
Porcine associated							Steel et al.,
gemycircularvirus 1	KT862250	49 Fec80061 pig	Sus scrofa domestica	Pig	Faeces	New Zealand	2016
Porcine associated				5			Sikorski et
gemycircularvirus 2	KF371640	as5	Sus scrofa	Domestic pig	Faeces	New Zealand	al., 2013
0 7	11 07 1040	000	603 301010	Domestic pig	1 40003		
Pteropus associated	1/7720004			Det	F	T	Male et al.,
gemycircularvirus 1	KT732804	Tbat 45285	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated		TI / 1700/	54	5.4	_	-	Male et al.,
gemycircularvirus 1	KT732805	Tbat 47364	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated							Male et al.,
gemycircularvirus 2	KT732792	Tbat 103791	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated						-	Male et al.,
gemycircularvirus 2	KT732793	Tbat A 103791	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated						· 0·	Male et al.,
gemycircularvirus 3	KT732797	Tbat A 103852	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated	11102101	1001A 100002	T teropus tongunus	Dat	1 40003	Tonga	Male et al.,
	1/770044	The+11 402000		Det	F	T	,
gemycircularvirus 4	KT732814	Tbat H 103806	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated				_	_	_	Male et al.,
gemycircularvirus 5	KT732801	Tbat 12377	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated							Male et al.,
gemycircularvirus 5	KT732802	Tbat H 12377	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated							Male et al.,
gemycircularvirus 6	KT732803	Tbat 103951	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated			s to op an to sgame				Male et al.,
gemycircularvirus 6	KT732796	Tbat H 103639	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated	INTO2100	1000000	T toropus tongunus	Dui	1 40000	Tonga	Male et al.,
gemycircularvirus 7	KT732807	Tbat A 103746	Dtoropuo tongonuo	Bat	Faeces	Tongo	2016
	K1/3200/	Tual A 103740	Pteropus tonganus	Dal	Faeces	Tonga	
Pteropus associated	VT70000	The LA 400000		Det	F	T	Male et al.,
gemycircularvirus 7	KT732808	Tbat A 103909	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated				_	_	_	Male et al.,
gemycircularvirus 7	KT732809	Tbat H 103746	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated							Male et al.,
gemycircularvirus 7	KT732810	Tbat H 103909	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated							Male et al.,
gemycircularvirus 7	KT732811	Tbat L 103746	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated			, ,			•	Male et al.,
gemycircularvirus 7	KT732812	Tbat L 103909	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated			, terepue teriganae	241		. onga	Male et al.,
gemycircularvirus 8	KT732806	Tbat 31579	Ptoropus tongopus	Bat	Faccos	Tonga	2016
Pteropus associated	111/02000	100101010	Pteropus tonganus	Dai	Faeces	i unga	Male et al.,
'	VT700705	That 04000	Diamanus tanan	Det	[a	Tance	,
gemycircularvirus 9	KT732795	Tbat 21383	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated			B ()		_	-	Male et al.,
gemycircularvirus 10	KT732794	Tbat H 103958	Pteropus tonganus	Bat	Faeces	Tonga	2016
Rat associated							Uch et al.,
gemycircularvirus 1	KR912221	Ch-zjrat-01	Homo sapiens	Human	Plasma	France	2015
Sclerotinia			· · · · · · · · · · · · · · · · · · ·		Mycelial		Yu et al.,
gemycircularvirus 1	GQ365709	SsHADV-1 CN	Sclerotinia sclerotiorum	Sclerotinia	samples	China	2010
	2 20001 00				River		
Sclerotinia		SsHADV-1 NZ H6			Sedime		Kraberger et
	VE260025		Diver Codimente			New Zeeland	
gemycircularvirus 1	KF268025	2012	River Sediments	-	nts	New Zealand	al., 2013
0 1 11 1		0.114014.11-0-1			River		
Sclerotinia		SsHADV-1 NZ SR1			Sedime		Kraberger et
gemycircularvirus 1	KF268026	2012	River Sediments	-	nts	New Zealand	al., 2013
					River		
Sclerotinia		SsHADV-1 NZ SR3			Sedime		Kraberger et
gemycircularvirus 1	KF268027	2012	River Sediments	-	nts	New Zealand	al., 2013
					River		,
Sclerotinia		SsHADV-1 NZ SR5			Sedime		Kraberger et
gemycircularvirus 1	KF268028	2012	River Sediments	_	nts	New Zealand	al., 2013
Sclerotinia	11 200020	SsHADV-1-US-		-	Abdome		
	KMEDDOOD		looppure rombuil	Domaal			Dayaram et
gemycircularvirus 1	KM598382	549LB-12	Ischnura ramburii	Damselfly	n	USA	al., 2015

Sclerotinia		SsHADV-1-US-			Abdome		Dayaram et
gemycircularvirus 1 Sclerotinia	KM598383	549DFS-12 SsHADV-1-US-	Erythemis simplicicollis	Dragonfly	n Abdome	USA	al., 2015 Dayaram et
gemycircularvirus 1	KM598384	549SR-12	Pantala hymenaea	Dragonfly	n	USA	al., 2015
Sewage derived gemycircularvirus 1	KJ547638	BS3917	Sewage oxidation pond		Sowago	New Zealand	Kraberger et al., 2015a
Sewage derived	KJ347030	SaGmV-1 NZ-	Sewage oxidation poild	-	Sewage		Kraberger et
gemycircularvirus 1	KM821747	BS3970-2012	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Sewage derived							Kraberger et
gemycircularvirus 2	KJ547641	BS4117	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Sewage derived gemycircularvirus 3	KJ547636	BS4014	Sewage oxidation pond	-	Sewage	New Zealand	Kraberger et al., 2015a
Sewage derived					<u>-</u>		Kraberger et
gemycircularvirus 4	KJ547640	BS3972	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Sewage derived					-		Kraberger et
gemycircularvirus 4	KJ547637	BS3939	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Sewage derived gemycircularvirus 5	KJ547639	BS3970	Sewage oxidation pond	-	Sewage	New Zealand	Kraberger et al., 2015a
Sheep associated gemycircularvirus 1	KT862249	47 Fec80064 sheep	Ovis aries	Sheep	Faeces	New Zealand	Steel et al., 2016
Sheep associated							Steel et al.,
gemycircularvirus 1	KT862251	51 Fec80064 sheep	Ovis aries	Sheep	Faeces	New Zealand	2016
							Marzano &
Soybean associated	1/75000 /0		o	<u> </u>			Domier,
gemycircularvirus 1	KT598248	SlaGemV1-1	Glycine max	Soybean	Leaf	USA	2015

Table 2: Details of all isolates within the genus *Gemykibivirus*

Species	Accession	Isolate	Isolation source	Common Name	Sample type	Country	Reference
opecies	ACCESSION	isolate	Isolation source	Name	type	Country	Conceicao-
Badger associated				European			Neto et al.,
gemykibivirus 1	KP263543	588t	Meles meles	badger	Faeces	Portugal	2015
geniyabinas i	11 200040	5001	Meles meles	Chatham	1 40003	rontugai	2010
Black robin associated				Island black			Sikorski et
gemykibivirus 1	KF371634	P21	Petroica traversi	robin	Faeces	New Zealand	al., 2013
Blackbird associated	11 07 1004	121		TODITI	1 40000	New Zealand	Sikorski et
gemykibivirus 1	KF371633	P22	Turdus merula	Blackbird	Faeces	New Zealand	al., 2013
Bovine associated	14 07 1000		raidao morala	Blackbird	1 40000	Ton Louiding	Lamberto et
gemykibivirus 1	LK931483	HCBI8.215	Bos taurus	Cow	Serum	Germany	al., 2014
Dragonfly associated	E1(331403	110010.215	203 100/03	000	Abdome	Ocimany	Rosario et
gemykibivirus 1	JX185430	FL1-2X-2010	Miathyria marcella	Dragonfly	n	USA	al., 2012
Human associated	0/(100-100	1212/2010	Mildiryna maroona	Drugonny		00/1	Kraberger et
gemykibivirus 1	KJ547644	BS3980	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Human associated	10041044	DOODOO	comage exidation pond		oomugo		Kraberger et
aemvkibivirus 1	KJ547645	BS3849	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Human associated		200010	contage extension pond		contago	Louiding	u., 2010u
gemykibivirus 1	KP974694	DB2	Homo sapiens	Human	Plasma	Germany	unpublished
Human associated		222				connany	Lamberto et
gemykibivirus 1	LK931485	MSSI2.225	Homo sapiens	Human	Blood	Germany	al., 2014
g					Cerebro		
Human associated					spinal		Phan et al.,
gemykibivirus 2	KP133075	SL1	Homo sapiens	Human	fluid	Sri Lanka	2015
J			, , , , , , , , , , , , , , , , , , ,		Cerebro		
Human associated					spinal		Phan et al.,
gemykibivirus 2	KP133076	SL2	Homo sapiens	Human	fluid	Sri Lanka	2015
			·		Cerebro		
Human associated					spinal		Phan et al.,
gemykibivirus 2	KP133077	SL3	Homo sapiens	Human	fluid	Sri Lanka	2015
Human associated							Phan et al.,
gemykibivirus 2	KP133078	BZ1	Homo sapiens	Human	Faeces	Brazil	2015
Human associated							Phan et al.,
gemykibivirus 2	KP133079	BZ2	Homo sapiens	Human	Faeces	Brazil	2015
Human associated							Phan et al.,
gemykibivirus 2	KP133080	NP	Untreated sewage	-	Sewage	Nepal	2015
Human associated						_	
gemykibivirus 3	KP987887	GemyC1c	Homo sapiens	Human	Plasma	France	unpublished
							Conceicao-
Human associated	10000540			Egyptian	-		Neto et al.,
gemykibivirus 3	KP263546	541c	Herpestes ichneumon	mongoose	Faeces	Portugal	2015
				D 1 1	Buccal		
11				Black-	and		Llana ()
Human associated	1/700000	0.74		capped	cloacal	110.4	Hanna et al.,
gemykibivirus 4	KT363839	GeTz1	Poecile atricapillus	chickadee	swab	USA	2015

Human associated	1/11242427		llomo coniene	Llumon	Pericard	France	uppubliched
gemykibivirus 5	KU343137	HV-GcV2	Homo sapiens	Human	ial fluid	France	unpublished
M				E			Conceicao-
Mongoose associated	10000545	1001		Egyptian	-		Neto et al.,
gemykibivirus 1	KP263545	160b	Herpestes ichneumon	mongoose	Faeces	Portugal	2015
Pteropus associated							Male et al.,
gemykibivirus 1	KT732813	Tbat A 64418	Pteropus tonganus	Bat	Faeces	Tonga	2016
					Pharyng		
Rhinolophus					eal &		
associated		BtRh-CV-	Rhinolophus		rectal		Wu et al.,
gemykibivirus 1	KJ641737	6/Tibet2013	hipposideros	Bat	swabs	China	2015
Rhinolophus							Conceicao-
associated				Egyptian			Neto et al.,
gemykibivirus 1	KP263544	181a	Herpestes ichneumon	mongoose	Faeces	Portugal	2015
			1	0	Pharyng	Ŭ	
Rhinolophus					eal &		
associated			Rhinolophus		rectal		Wu et al.,
gemykibivirus 2	KJ641726	BtRf-CV-8/NM2013	ferrumequinum	Bat	swabs	China	2015
Sewage derived			•				Kraberger e
gemykibivirus 1	KJ547643	BS4149	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
Sewage derived		27 BS14149					Steel et al.,
gemykibivirus 1	KT862240	chicken	Gallus gallus domesticus	Chicken	Faeces	New Zealand	2016
Sewage derived			Canac ganac acmocacac	0		Lion Louiding	Steel et al.,
gemykibivirus 1	KT862252	52 BS14149 cow	Bos taurus	Cow	Faeces	New Zealand	2016
Sewage derived	IN OULLUL	02 00 14 140 00W		0011	1 40003		Steel et al.,
gemykibivirus 1	KT862255	56 BS14149 hare	Lepus europaeus	Hare	Faeces	New Zealand	2016
Sewage derived		22.2011.101.010					Kraberger e
gemykibivirus 2	KJ547642	BS3911	Sewage oxidation pond	-	Sewage	New Zealand	al., 2015a
yonnymonnius z	1007/042	000011	comage onidation pond	-	ocwaye		ui., 2013d

Table 3: Details of all isolates within the genus Gemygorvirus

Species	Accession	Isolate	Isolation source	Common Name	Sample type	Country	Reference
Canine associated gemygorvirus 1	KT862254	53 Fec7 dog	Canis lupus familiaris	Dog	Faeces	New Zealand	Steel et al., 2016
Mallard associated gemygorvirus 1 Mallard associated	KT862238	4 Fec7 duck	Anas platyrhynchos	Duck	Faeces	New Zealand	Steel et al., 2016 Steel et al.,
gemygorvirus 1	KT862239	24 Fec7 duck	Anas platyrhynchos	Duck	Faeces	New Zealand	2016 van den
Mallard associated gemygorvirus 1	JN704610	VS4700006	Meles meles	European badger	Rectal swab	Netherlands	Brand et al., 2012
Pteropus associated gemygorvirus 1 Pteropus associated	KT732790	Tbat A 103952	Pteropus tonganus	Bat	Faeces	Tonga	Male et al., 2016 Male et al.,
gemygorvirus 1	KT732791	Tbat H 103952	Pteropus tonganus	Bat	Faeces	Tonga	2016
Sewage derived gemygorvirus 1 Sewage derived	KJ547635	BS3963	Sewage oxidation pond	-	Sewage Cervical	New Zealand	Kraberger et al., 2015a
gemygorvirus 1	KJ413144	349	Homo sapiens	Human	sample	South Africa	unpublished
Starling associated gemygorvirus 1	KF371632	P14	Sturnus vulgaris	European starling	Faeces	New Zealand	Sikorski et al., 2013

Table 4: Details of all isolates within the genus Gemykolovirus

				Common	Sample		
Species	Accession	Isolate	Isolation source	Name	type	Country	Reference
Pteropus associated							Male et al.,
gemykolovirus 1	KT732798	Tbat A 103779	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated			, 0			0	Male et al.,
gemykolovirus 1	KT732799	Tbat H 103779	Pteropus tonganus	Bat	Faeces	Tonga	2016
Pteropus associated						-	Male et al.,
gemykolovirus 2	KT732800	Tbat H 103921	Pteropus tonganus	Bat	Faeces	Tonga	2016

Table 5: Details of all isolates within the genus *Gemykrogvirus*

				Common	Sample		
Species	Accession	Isolate	Isolation source	Name	type	Country	Reference
Bovine associated gemykrogvirus 1	LK931484	HCBI9.212	Bos taurus	Cow	Serum	Germany	Lamberto et al., 2014
Caribou associated gemykrogvirus 1	KJ938717	FaGmCV-13	Rangifer tarandus	Caribou	Faeces	Canada	Ng et al., 2014
Sewage derived gemykrogvirus 1	KJ547634	BS3913	Sewage oxidation pond	-	Sewage	New Zealand	Kraberger et al., 2015a

Table 6: Details of all isolates within the genus *Gemyvongvirus*

Species	Accession	Isolate	Isolation source	Common Name	Sample type	Country	Reference
Human associated gemyvongvirus 1	KP974693	DB1	Homo sapiens	Human	Plasma	Germany	unpublished

Table 7: Details of all isolates within the genus *Gemytondvirus*

Species	Accession	Isolate	Isolation source	Common Name	Sample type	Country	Reference
Ostrich associated							Sikorski et
gemytondvirus 1	KF371630	as3	Struthio camelus	Ostrich	Faeces	New Zealand	al., 2013

Table 8: Details of all isolates within the genus Gemykroznavirus

				Common	Sample		
Species	Accession	Isolate	Isolation source	Name	type	Country	Reference
Rabbit associated							Sikorski et
gemykroznavirus 1	KF371631	as35	Oryctolagus cuniculus	Rabbit	Faeces	New Zealand	al., 2013

Table 9: Details of all isolates within the genus *Gemyduguivirus*

Species	Accession	Isolate	Isolation source	Common Name	Sample type	Country	Reference
Dragonfly associated					Abdome		Rosario et
gemyduguivirus 1	JX185428	TO-DFS3B2-2010	Pantala flavescens	Dragonfly	n	Tonga	al., 2012

Figure 1: Maximum likelihood phylogenetic tree of the Rep amino acid sequences inferred using PHYML with LG+G+I substitution model and rooted with geminivirus sequences. The sequences of geminivirus labelled with the corresponding genera names are used as a guide to identify genera within the *Genomoviridae* family. The cyan line shows a rough genera demarcation for both *Genomoviridae* and *Geminiviridae*. Branches with <75% SH-like branch support have been collapsed.

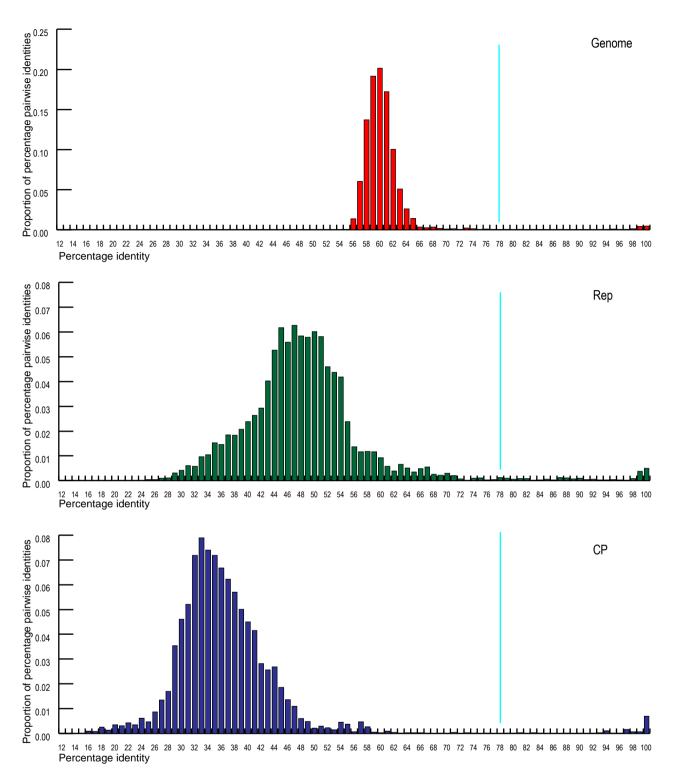
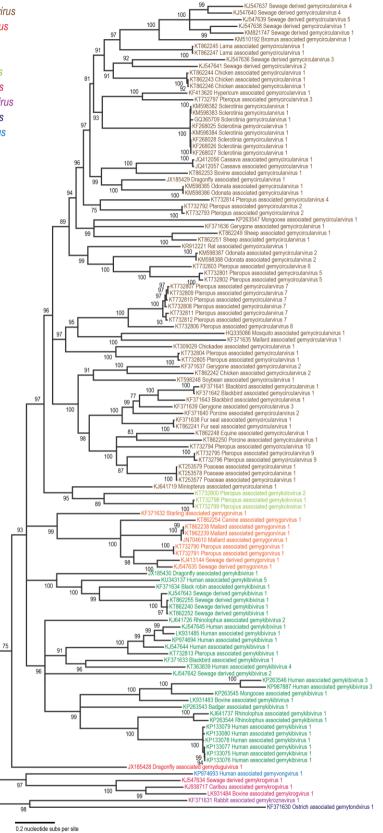
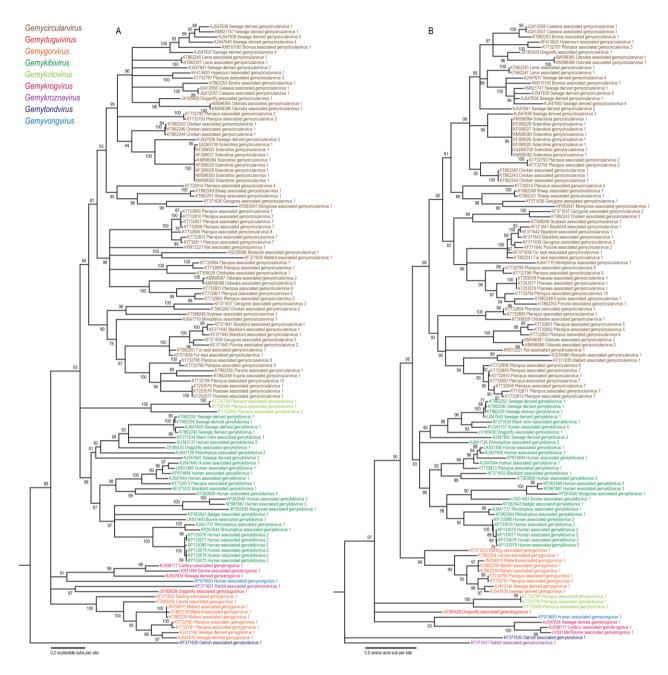
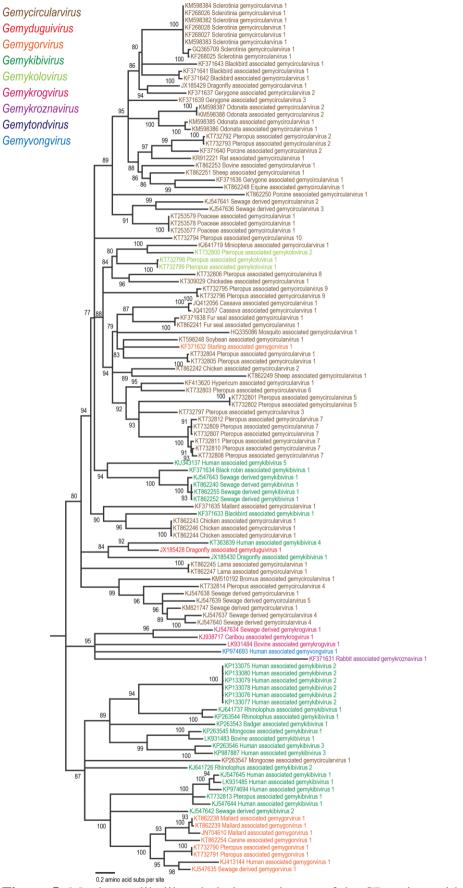




Figure 2: Distribution of (A) genome-wide, (B) Rep and (C) CP pairwise identities (121 taxa) of genomoviruses calculated using SDT v1.2 (Muhire et al., 2014).


Gemycircularvirus Gemyduguivirus Gemygorvirus Gemykibivirus Gemykolovirus Gemykrogvirus Gemykroznavirus Gemytondvirus Gemyvongvirus

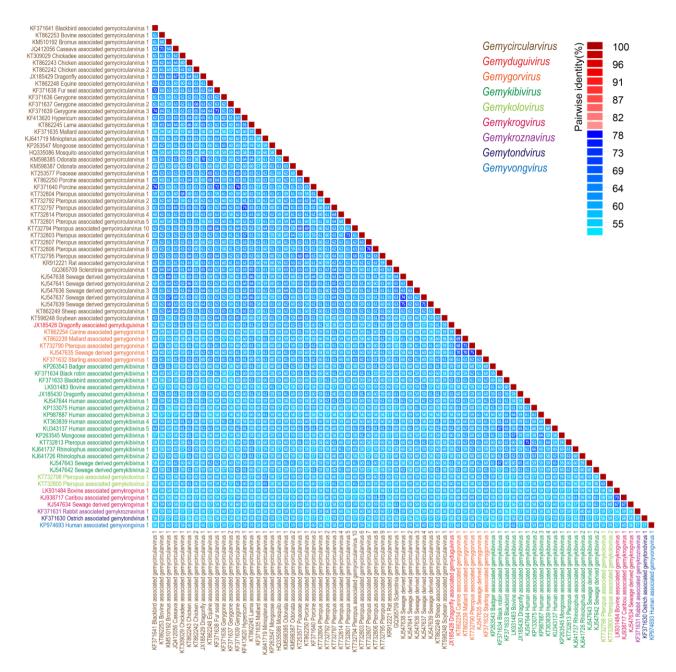

Figure 3: Maximum likelihood phylogenetic tree (GTR+CAT) with SH-like support of the genomes of isolates in the *Genomoviridae* family supporting that the genera demarcation is supported at the genome level as well despite there being evidence of recombination within the genomes. Branches with <75% SH-like branch support have been collapsed.

Figure 4: Maximum likelihood phylogenetic tree of (A) the *rep* gene sequences and (B) the Rep amino acid sequences inferred using PHYML with GTR+G and LG+G+I substitution models and rooted with geminivirus sequences. The genera demarcation that is Rep-sequence driven for the family *Genonoviridae* is supported at both nucleotide and protein level as illustrated by the *rep* and Rep sequence inferred ML phylogenetic trees. Branches with <75% SH-like branch support have been collapsed.

Figure 5: Maximum likelihood phylogenetic tree of the CP amino acid sequences inferred using PHYML with LG+G+I substitution models and rooted with geminivirus sequences. Branches with <75% SH-like branch support have been collapsed.

Figure 6: Genome-wide pairwise identities representative isolates of each species within the *Genomoviridae* family determined using SDT v1.2 (Muhire et al., 2014). The 'two colour' profile highlights that the 78% species demarcation threshold is valid for the proposed species in the *Genomoviridae* family.

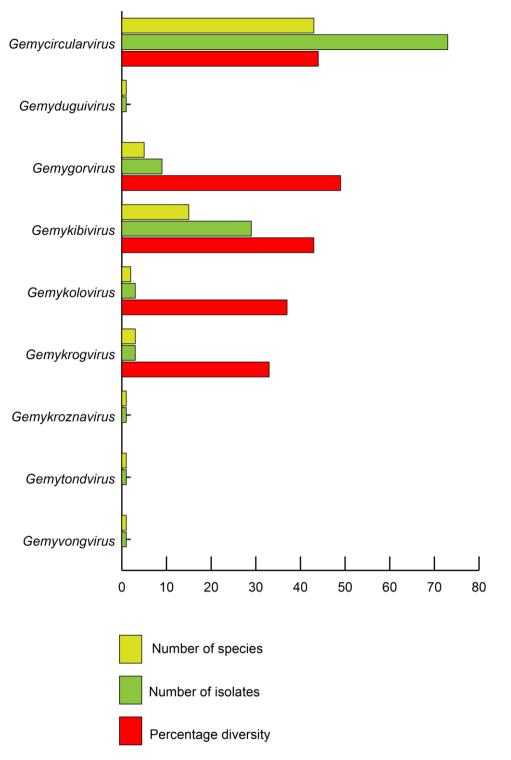


Figure 7: Summary of genera and the associated species and their diversity (within genera) within the *Genomoviridae* family.