

'The transformation of viral epidemiology and clinical studies by next-generation sequencing'

Utility of virus genomes

- Sequencing virus genomes
 - The individual
 - National epidemic tracking
 - Zoonotic chatter
 - The beginning of an outbreak
- Endemic disease

Holmes and Grenfell PLoS Comp Biol

Genome sequencing 2016

- Zoonotic chatter Rotaviruses in Vietnam
- The beginnings of human transmission MERS CoV
- Major outbreaks Ebola virus
- Infection control in the UK Influenza virus

Sampling frameworks - zoonosis

The work of My Phan and Matt Cotten in collaboration with Stephen Baker

Pilot work of Wellcome Trust VIZIONS

Agnostic Virus Genome Detection

ViSeq method Sensitivity - Norovirus

Enteric virus content of human, porcine fecal samples

Criteria to be a virus: A contiguous assembled sequence of length x (i.e. <1000bp) A minimum read depth per base for the contig. (i.e.100)

Rotavirus genomes

<u>Reoviridae – Rotavirus</u> <u>For Group A rotaviruses</u> Major classification based on G (VP7, seg 9) and P (VP4, seg 4) - targets of neutralizing antibodies

Extended classification Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx 27 37 17 9 9 8 18 10 12 15 11

<u>Major Human Group A</u> G1P[8], G2P[4], G3P[8], G4P[8], G9P[8]

on a genotype constellation I1-R1-C1-M1-A1-N1-T1-E1-H1 or I2-R2-C2-M2-A2-N2-T2-E2-H2

Rotavirus genome segment reassortment

Genotype constellation							Host count						
	VP7	VP4	VP6	VP1	VP2	VP3	NSP1	NSP2	NSP3	NSP4	NSP5	Human	Pig
Mono-infection	G1	P[8]		R1	C1	M1	A1		T1	E1	H1	33	0
	G2	P[4]	12	R2	C2	M2	A2	N2	T2	E2	H2	12	0
	G3	P[8]		R1	C1	M1	A1		T1		HI	2	0
	G4	P[6]		R1	C1	M1	A8		T 7	E1	H1	1	1
	G4	P[6]		R1	C1	M1	AB		T1		HI	0	6
	G5	P[13]	15	R1	C1	M1	AB	N1	T7	E1	H1	0	1
	G11	P[13]	15	R1	C1	M1	AB	N1	T 7		HI	0	1
	G9	P[23]	15	R1	C1	M1	AB		T1	E1	HI	0	1
	G5	P[13]	15	R1	C1	M1	A 8		T7	x	HI	0	1
	G1	P[8]	12	R2	C2	M2	A2	N2	Т2	E2	H2	3	0
	G2	P[8]	12	R2	C2	M2	A2	N2	T2	E2	H2	1	0
	G1	P[8]	x	R1	C1	M1	A1	N1	T1	E1	H1	1	0
Mixed infection	G1/G2	P[8]/P[4]	11/12	R1	C1/C2	M1/M2	A1/A2	N1/N2	T1/T2	E1/E2	H1/H2	1	0
	G1/G2	P[8]/P[4]	11/12	R1/R2	C1	M1/M2	A1/A2	N1/N2	T1/T2	E1/E2	H1	1	0
	G1/G2	P[8]/P[4]	11/12	R1/R2	C1/C2	M1/M2	A1/A2	N1/N2	T1/T2	E2	H2	1	0
	G1/G2	P[8]/P[4]	11/12	R1/R2	C1/C2	M1/M2	A1/A2	N1/N2	T1/T2	E1/E2	H1	1	0
	G1/G2	P[8]/P[4]	11/12	R1/R2	C1/C2	M1/M2	A1/A2	N1/N2	T1/T2	E1/E2	H1/H2	1	0
	G1/G2	P[8]/P[4]	11/12	R1	C1/C2	M1	A1/A2	N1/N2	T1/T2	E1/E2	H1/H2	1	0
	G1	P[8]	11	R1	C1	M1	A1	N1/N1	T1	E1	H1	1	0
	G1/G4	P[8]	11	R1	C1	M1	A1/A8	N1/N1	T1/T1	E1/E1	H1/H1	0	1
	G9/G11	P[13]/P[23]	15/15	R1/R1	C1	M1	A8/A8	N1/N1	T1/T7	E1/E1	H1	0	1

G5

G11

15

P[13]

Sequence not determined

Reassortments

Virus genomes and zoonotic chatter

- Human and animal contact areas
 - Random sequencing
 - Risk groups
 - Random sampling of human clinical samples
 - Random sampling of veterinary samples
- Linked to serology surveys and risk maps
 - Virus genetic diversity and genome movement risk maps
- Requires simple sample preparation, sequencing and assembly methods (commercial?)

12 years of Virus Outbreaks

SARS	H5N1	H1N1	H7N9	MERS	Ebola
Coronavirus	Influenza A	Influenza A	Influenza A	Coronavirus	virus
2002-3	2003-4	2009-10+	2013	2012-5	2014-5
8273 cases	630 cases	global	134 cases	1266 cases	28 103 cases
775 deaths	375 deaths	~579 000 deaths	44 deaths	388 deaths	11 290 deaths
[§] CFR ~10%	CFR ~60%	CFR ~0.01%	CFR ~33%	CFR ~30%	CFR ~40%

In an outbreak there should be a commitment to turn a portion of RESIDUAL diagnostic nucleic acid into a publically available pathogen genomes at **NO** additional cost to the country(s) experiencing the outbreak & that the data leads to

Scase fatality rate

SHARED, ACTIONABLE & INTERPRETABLE INFORMATION

Virus genomes & molecular epidemiology

Phylodynamics, a term coined to denote the interplay between evolution and epidemiology when occurring on the same timescale

Consensus genome

Samples

Clinically actionable/useful virus genome

MERS-CoV – 30Kb RNA genome

Sharing data allows new insights

http://mers.nextflu.org

Assiri et al (2013), NEJM 369 (5), 407; Cotten et al (2013), Lancet 382 (9909), 1993-2002; Cotten et al (2014), mBio 5(1), e01062-13

Shared data allows real-time updates

Reduction in cluster size as a proxy for control of infection or limit of an infection cycle?

Time

Ebola virus genome sustained local sequencing

Move the data not the samples

Ian Goodfellow, Armando Arias, Jia (Luca) Lu, Lucy Thorne, Matt Cotten, My Vu Tra Phan, Simon Watson, Andrew Rambaut, Dhamari Naidoo

Yozwiak et al Nature 2015; 518(7540): 477-9

Phylogeography of Ebola virus 2014-5

Minority variants and transmission chains

Real time virus genomes

855 sequencing samples were processed between16 April 2015 and 15 September 2015 yielding 614 EBOV genomes (72%).

Utility of virus genomes

Opportunities exist if virus genome sequences are routinely obtained from diagnostic samples during outbreaks or from routine diagnostic services.

In an a integrated healthcare system pathogen genome sequence will allow evidence based infection control at different health care levels, will inform national epidemiology and will allow stratified patient management for treatments.

SHARED, ACTIONABLE & INTERPRETABLE INFORMATION

35 recommendations

Infection response through virus genomics

InfeCtion respONse through vIrus genomiCs

How to share data

Figure 15.3 A simplified vision of a two-tier data sharing strategy

The size of circles (not to scale) are indicative of the relative data storage burden (computational disc space), of the different subsets of data. Raw genomic data will consume the greatest disc space (therefore cost more to store than other data types), and so its longer term storage would be better suited in a consolidated repository build for high volume data storage.

Mapping Genome sequencing to clinical data

Sample — Diagnostic identifier — Hospital/patient data

	Influenza	Norovirus	HIV	HCV
Total submitted lab numbers	407	20	360	152
Total records retrieved from Winpath.Results	406 (99.8%)	20 (100%)	360 (100%)	150 (98.7%)
Total identifiers found	406 (99.8%)	20 (100%)	240 (66.7%)	148 (97.4%)
Carecast data found	310 (76.2%)	14 (70%)	76 (21.1%)	30 (19.7%)
Obvious UCLH inpatient locations	357 (87.7)	14 (70%)	28 (7.8%)	2 (1.3%)
Patient stay records matches	240 (59%)	11 (55%)	20 (5.6%)	2 (1.3%)

UK Influenza virus Hospital transmission chains

- UCLH outbreaks driven by multiple introductions from community
- Limited patient-patient chains ~1 in 7 cases initiate a chain of hospital transmission

Early detection of vaccine mismatch 357 influenza genomes from UCLH & Barts Health over 3 consecutive influenza seasons

Conclusions

- NGS for large scale and rapid virus genome sequencing is almost fit for purpose but need:
 - Commercial sample to multiplex library
 - Accurate minority variant detection required
 - Stable computational pipelines
 - Linking to meta data
- With appropriate sampling framework large scale sequencing can:
 - Characterise a zoonotic reservoir
 - Identify zoonotic virus 'chatter'
 - Inform outbreak control in the field and in hospitals

Acknowledgements

Sanger Institute My VT Phan Simon Watson Matthew Cotton

University of Edinburgh Andrew Rambaut Gytis Dudas

UCL Zisis Kozlakidis

Cambridge University

Ian Goodfellow Armando Arias, Jia (Luca) Lu, Lucy Thorne

Dhamari Naidoo

WHO Emerging and Dangerous Pathogens Laboratory Network. WHO Sierra Leone and Laboratory and Technical Working Group from MoHS Centre for Disease Control (CDC), USA Public Health England (PHE)

Kingdom of Saudi Arabia Ministry of Health

Ziad Memish

Abdullah Al-Rabeeah, Hatem Makhdoom, Abdullah Assiri, Jaffar Al-Tawfiq, Rafat Alhakeem, Hossam Madani, Fahad AlRabiah, Sami Al Hajjar, Ali Albarrak, Hesham Flemban, Hanan Balkhy, Sarah Alsubaie

Health Innovation Challenge Fund

Department of Health

wellcometrust

WP Leads Paul Kellam Andrew Hayward Eleni Nastouli Steven Morris

University College London Laura Shallcross Dan Frampton Zisis Kozlakidis Ellen Fragaszy Tiziano Gallo Cassarino Fatima Wurie Anil Gunesh

BartsHealth Duncan Clark Jonathan Hubb Graham Foster Anthony Oliver

<u>UCLH</u> Bridget Ferns Elizabeth Gyimah Jade Raffle Pietro G. Coen

WT Sanger Institute Simon Watson Nick Grayson Spela Binter Stephanie Edwards Swee Hoe Ong

<u>PHE</u>

Richard Myers David James Allen Richard Harris David Brown Tamyo Mbisa MRC-CTU David Dunn

Royal Free Susan Hopkins Daniel Webster Tanzina Haque William Rosenberg

<u>University of Nottingham</u> William Irving Jonathan Ball

<u>University of Edinburgh</u> Andrew Leigh-Brown Gonzalo Yerba

HCVRUK John McLauclhan

ICONIC Team