

This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document "Help with completing a taxonomic proposal"

Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example.

MODULE 1: TITLE, AUTHORS, etc

Code assigned:	2012.009	<i>bV</i>		(to be con officers)	mpleted by	ICTV
Short title: create 1 new species (e.g. 6 new species in the genus 2 Modules attached (modules 1 and 9 are required)		Lyssaviru 1 🖂 6 🗌	2 🖂 7 🗌	3 8	4 🗌 9 🖂	5 🗌

Author(s) with e-mail address(es) of the proposer:

Conrad Freuling (Conrad.Freuling@fli.bund.de), Thomas Muller

List the ICTV study group(s) that have seen this proposal:

A list of study groups and contacts is provided at
http://www.ictvonline.org/subcommittees.asp . If
in doubt, contact the appropriate subcommittee
chair (fungal, invertebrate, plant, prokaryote or
vertebrate viruses)

Rhabdovirus group

ICTV-EC or Study Group comments and response of the proposer:

The submitted version was seen b	by the SG, and is supported with modifications	s.

Date first submitted to ICTV: Date of this revision (if different to above): 28/06/2012 15/05/2013

MODULE 2: NEW SPECIES

creating and naming one or more new species.

If more than one, they should be a group of related species belonging to the same genus. All new species must be placed in a higher taxon. This is usually a genus although it is also permissible for species to be "unassigned" within a subfamily or family. Wherever possible, provide sequence accession number(s) for one isolate of each new species proposed.

Code	201	2.009bV	(assigned by IC	TV offic	cers)
To creat	te 1 ne	ew species within:			
					in all that apply.
Ge	enus:	Lyssavirus			the higher taxon has yet to be
Subfar	mily:				eated (in a later module, below) write new) " after its proposed name.
Far	mily:	Rhabdoviridae			no genus is specified, enter
0	rder:	Mononegavirales			nassigned" in the genus box.
And nam	ne the	e new species:			GenBank sequence accession number(s) of reference isolate:
Bokeloh	bat ly.	ssavirus			JF311903

Reasons to justify the creation and assignment of the new species:

- Explain how the proposed species differ(s) from all existing species.
 - If species demarcation criteria (see module 3) have previously been defined for the genus, **explain how the new species meet these criteria**.
 - If criteria for demarcating species need to be defined (because there will now be more than one species in the genus), please state the proposed criteria.
- Further material in support of this proposal may be presented in the Appendix, Module 9

Bokeloh bat lyssavirus (BBLV) was first isolated in mouse neuroblastoma cells (MNA) from the brain of a Natterer's bat (*Myotis nattereri*) that had died after a clinical disease suggestive of rabies in Germany during 2010. The presence of lyssavirus antigens was confirmed using direct immunofluorescence test (DFA) and immunohistochemistry with rabies biologics (Freuling et al., 2011). BBLV was pathogenic for mice via intracranial and intramuscular inoculation routes, causing fatal encephalitis. Kaplan-Meyer survival plots and clinical scores were significantly different for BBLV in comparison with EBLV-1 and EBLV-2. During infection, BBLV formed typical to lyssaviruses intracytoplasmic inclusions, detected by staining with FITC-conjugated anti-nucleocapsid monoclonal antibodies.

Besides the initial case, two further Natterer's bats in France and Germany, respectively, tested BBLV positive in 2012 (Picard-Meyer et al., 2013, Freuling et al., submitted). To date, these three isolations are the only reported rabies cases in Natterer's bats.

Antigenic patterns in reactions with anti-nucleocapsid monoclonal antibodies clearly distinguish BBLV from other lyssaviruses (Schneider et al., 1985; Annex, Table 1). This difference was supported by antigenic cartography (Horton et al., 2010) where BBLV was separated from all characterized lyssaviruses, but related to phylogroup I viruses. In this test, BBLV was antigenically equidistant from RABV and EBLV-2 (average 3.9 and 4.3AU respectively) but further from EBLV-1 viruses (average 6.5 AU). Furthermore, a comparative study with a panel of sera from human RABV vaccinees (for details of protocol see Malerzcyk et al., 2007) showed cross-neutralization with BBLV, albeit with the lowest level of correlation (Annex, Figure 3), supporting that BBLV is a separate member of phylogroup 1 lyssaviruses.

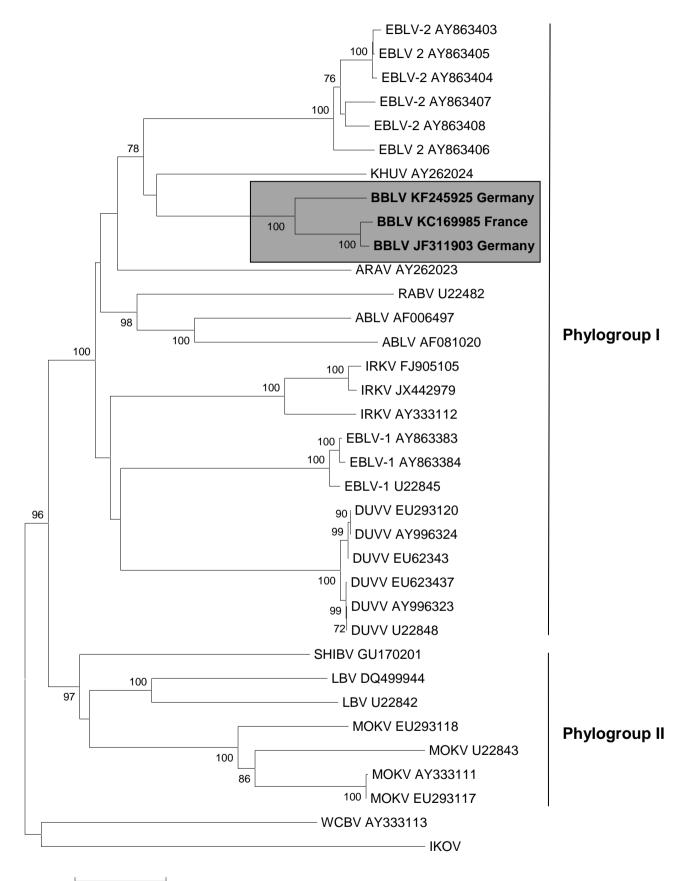
The negative-sense RNA genome of BBLV is 11,900 nt long, encoding for 5 genes: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-

dependent RNA polymerase (L). Thus, the genome organization and sequence relationships are consistent with the classification as a lyssavirus. Using concatenated N-P-M-G-L gene sequences all BBLV sequences demonstrate 80% and 79% identity to the sequence of the most similar viruses KHUV and EBLV-2, respectively, while the intra-species identity values ranged between 92.7% and 98.6%. Phylogenetic analysis, performed on different genome fragments, demonstrated limited relatedness between BBLV and all other lyssavirus species (Annex, Figure 2). Specifically, although BBLV is related to EBLV-2 and KHUV it cannot be included in these species (Annex, Figure 2).

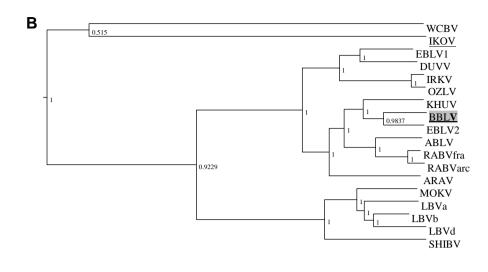
Therefore, BBLV meets the criteria for a novel lyssavirus species based on genetic distance, phylogenetic reconstructions, antigenic patterns and ecologic features (Dietzgen et al., 2011).

MODULE 9: APPENDIX: supporting material

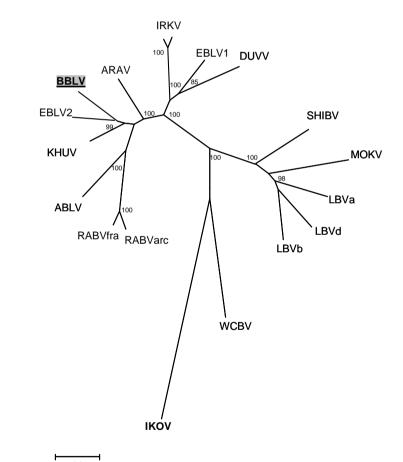
additional material in support of this proposal


References:

Badrane H, Bahloul C, Perrin P, Tordo N (2001) Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity. J Virol 75: 3268-3276.


- Bourhy H, Kissi B, Tordo N (1993) Molecular diversity of the Lyssavirus genus. Virology 194: 70-81.
- Dietzgen, R. G., Calisher, C. H., Kurath, G., Kuzmin, I. V., Rodriguez, L. L., Stone, D. M., Tesh, R. B., Tordo, N., Walker, P. J., Wetzel, T. and Whitfield, A. E. (2011).
 Rhabdoviridae. In Andrew M. Q. King, Michael J. Adams, Eric B. Carstens and Elliot J. Lefkowitz (Ed.), *Virus taxonomy: Ninth report of the International Committee on Taxonomy of Viruses* (pp. 654-681) Oxford, United Kingdom: Elsevier.
- Freuling CM, Beer M, Conraths FJ, Finke S, Hoffmann B, et al. (2011) Novel lyssavirus in Natterer's bat, Germany. Emerg Infect Dis 17: 1519-1522.
- Freuling, C.M., Abendroth, B., Beer, M., Fischer, M., Hanke, D., Hoffmann, B., Höper, D. Just, F., Mettenleiter, T.C., Schatz, J., Müller, T: Molecular diagnostics for the detection of Bokeloh bat lyssavirus in a bat from Bavaria, Germany, Virus research submitted
- Horton DL, McElhinney LM, Marston DA, Wood JL, Russell CA, et al. (2010) Quantifying antigenic relationships among the lyssaviruses. J Virol 84: 11841-11848.
- Malerczyk, C., Selhorst, T., Tordo, N., Moore, S. A. & Müller, T. (2009). Antibodies induced by vaccination with purified chick embryo cell culture vaccine (PCECV) crossneutralize non-classical bat lyssavirus strains. Vaccine 27, 5320-5325.
- Picard-Meyer, E., Servat, A., Robardet, E., Moinet, M., Borel, C. & Cliquet, F. (2013). Isolation of Bokeloh bat lyssavirus in Myotis nattereri in France. Arch Virol, 1-8.
- Schatz, J., Fooks, A. R., McElhinney, L., Horton, D., Echevarria, J., Vazquez-Moron, S., Kooi, E. A., Rasmussen, T. B., Muller, T. & Freuling, C. M. (2013). Bat Rabies Surveillance in Europe. Zoonoses Public Health 60, 22-34.
- Schneider, L. G., Barnard, B. J. H., Schneider, H. P., Odegaard, O. A., Mueller, J., Selimov, M., Cox, J. H., Wandeler, A. I., Blancou, J. & Meyer, S. (1985). Application of monoclonal antibodies for epidemiological investigations and oral vaccination studies. In Rabies in the tropics, pp. 47-59. Edited by E. Kuwert & C. Merieux. Berlin: Springer Verlag.

Annex:


Include as much information as necessary to support the proposal, including diagrams comparing the old and new taxonomic orders. The use of Figures and Tables is strongly recommended but direct pasting of content from publications will require permission from the copyright holder together with appropriate acknowledgement as this proposal will be placed on a public web site. For phylogenetic analysis, try to provide a tree where branch length is related to genetic distance.

0,05

С

Annex Figure 2. Phylogenetic reconstructions of the *Lyssavirus* genus based on full N-gene sequences with neighbour-joining (A), bayesian (B), or full genome sequence with maximum likelihood (C) evolutionary models. Significant bootstrap values or posterior probabilities are shown for key nodes.

ABLV

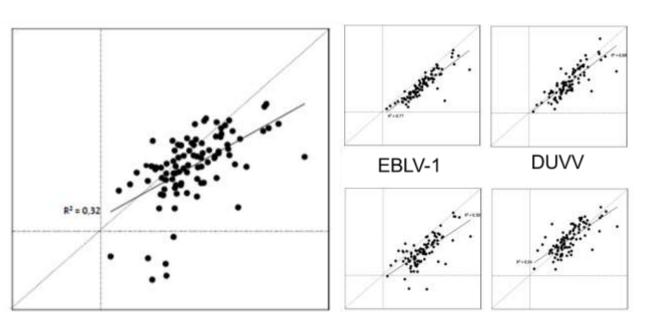


Figure 3: Results of a cross-neutralization study using a panel of human sera after vaccination with PCECV. Virus neutralizing antibody (VNA) concentrations against CVS-11 and other non-RABV lyssaviruses were determined by using a modified rapid fluorescent focus inhibition test (RFFIT).

anti-NC mAb	RABV	LBV	MOKV	DUVV	EBLV-1	EBLV-2	ABLV	BBLV
W239.17	+++	+++	+++	+++	+++	+++	+++	+++
W187.5	+++	-	-	-	-	-	+++	-
W187.11.2	+++	-	-	-	-	-	+++	+++
MW187.6.1	+++	+++	+++	+++	-	-	+++	+++
MSA6.3	-	-	+++	-	+++	+++	-	+++
LBV7.36	-	+++	-	-	-	+++	-	-
DUV6.15.19	-	-	-	+++	+++	-	-	-
S62.1.2	-	-	-	-	+++	+++	-	-
P 41	-	-	-	-	-	-	-	-
Z144.88	-	-	-	-	-	-	-	-

Table 1: Reaction pattern of a panel of 10 anti-nucleocapsid monoclonal antibodies with selected lyssaviruses including **BBLV** as described before (Schneider et al., 1985).

Table 2: Nucleotide identity values for concatenated coding regions (N, P, M, G and L genes) of BBLV in comparison with lyssaviruses from all identified species. Full genomes of BBLV (JF311903), RABV (M31046; EU293111; EU293115; EU293113; EU293116), DUVV (EU293120; EU293119), EBLV-1 (EU293109, EU293112, EF157976), IKOV (JX193798), ABLV (NC_003243; AF081020), KHUV (EF614261), IRKV (FJ905105, EF614260), EBLV-2 (EF157977, EU293114), ARAV (EF614259), LBV (EU293108; EU293110), MOKV (EU293118, EU293117), SHIBV (GU170201) and WCBV (EF614258) were derived from NCBI Genbank. Concatenated sequences were aligned using ClustalW and a distance matrix was calculated as implemented in BioEdit.

Species	RABV	LBV	MOKV	DUVV	EBLV-1	EBLV-2	ABLV	ARAV	KHUV	IRKV	WCBV	SHIBV	BBLV	IKOV
RABV	81.6-92.3													
LBV	67.0-67.7	76.2												
MOKV	66.9-67.3	73.3-74.1	86.6											
DUVV	71.2-71.8	67.4-67.6	67.0-67.1	98.9										
EBVL-1	71.7-72.4	68.1-68.5	67.3-67.7	76.1	95.6-98.1									
EBLV-2	72.7-73.8	67.3-68.1	67.8-68.0	73.1-73.3	74.2-74.4	98.2								
ABLV	73.2-73.8	67.0-67.4	66.4-66.8	71.2	72.2-72.3	73.9								
ARAV	72.9-73.2	68.2-68.3	67.7-68.1	73.4-73.5	75.4-75.5	76.9	73.6							
KHUV	72.9-73.4	67.5-68.0	67.1-67.3	73.5-73.6	74.7	78.7-78.9	74.5	77.5						
IRKV	71.5-72.3	67.9-68.5	67.7-68.3	74.3-74.4	76.3-76.5	73.9	71.6	73.6-74.2	73.6-74.3	91.9				
WCBV	64.8-65.5	65.8-66.0	65.3-65.5	65.8	65.5-65.7	65.5	65.2	65.7	65.4	65.2				
SHIBV	67.2-67.7	73.8-75.1	71.9-72.0	67.7-67.8	68.2-68.3	68.1	67.2	68.1	67.9	68.7	66.4			
BBLV	72.7-73.6	67.5-67.9	67.6-68.1	73.1	74.2-74.3	78.2	74.3	76.3	78.4	73.6	65.1	68.7		
IKOV	61.9-62.5	62.7-62.9	62.3-62.5	62.5-62.6	62.6-62.7	62.8	62.3	62.6	62.4	62.4	63.2	63.5	62.5	

70 1353 101 918 75 609	70 1353 100-102 912 80 609	70 1356 90 897 83 609	70 1356 90 897 83 609	70 1356 101 894 88 609	70 1353 94 894 89 609	70 1356 85 894 85	70 1356 95 894 72	70 1356 93 897 82	70 1353 64 894 133	70 1353 98 918 76	70 1356 91 894 86	70 1353 66 870 74
101 918 75 609	100-102 912 80 609	90 897 83	90 897 83	101 894 88	94 894 89	85 894 85	95 894	93 897	64 894	98 918	91 894	66 870
918 75 609	912 80 609	897 83	897 83	894 88	894 89	894 85	894	897	894	918	894	870
75 609	80 609	83	83	88	89	85						
609	609						72	82	133	76	86	74
		609	609	609	600						00	/-
	202 204				009	609	609	609	609	609	609	609
204	203-204	191	211	210 (205)	207-209	210	208	214	206	205	210	209
1569	1569	1602	1575	1575	1578-1581	1581	1581	1575	1578	1569	1575	1575
578-588	546-563	562-563	560	512	508-509	514	504	569	862	613	496	569
6384	6384	6384	6384	6384	6384	6384	6384	6384	6384	6384	6384	6381
145	112-114	130-131	131	131	131	130	130	131	125	150	129	126
12006-16	11 940-57	11 975-6	11 966	11 930	11 918	11918	11903	11980	12278	12045	11900	11902
	145	145 112-114	145 112-114 130-131	145 112-114 130-131 131	145 112-114 130-131 131 131	145 112-114 130-131 131 131 131	145 112-114 130-131 131 131 131 130	145112-114130-131131131131130130	145 112-114 130-131 131 131 130 130 131	145 112-114 130-131 131 131 130 130 131 125	145 112-114 130-131 131 131 130 130 131 125 150	145 112-114 130-131 131 131 130 130 131 125 150 129

Table 3: The lengths of coding and non-coding regions of lyssavirus genomes.